
Supplementary Material - Learning Progressive Point Embeddings for 3D Point
Cloud Generation

Cheng Wen Baosheng Yu Dacheng Tao
School of Computer Science, Faculty of Engineering,

The University of Sydney, 6 Cleveland St, Darlington, NSW 2008, Australia
{cwen6671@uni., baosheng.yu@, dacheng.tao@}sydney.edu.au

1. Details in Our Network

In our paper, we have shown the main framework of pro-
posed point cloud generative network. In this section, we
provide more details of its three components.

Discriminator As mentioned in our paper, we attach a
point convolution layer or the set abstraction (SA) layer [1]
to extract local features after each MLP block. In the main
framework, we have shown details of each MLP block.
Here, we give the detail parameters of each SA layer used
in our experiments. The structure and working principle of
SA layer please refer to [1]. When embedding the input
points into high dimensional space pointwisely, the output
of each MLP block is a set of point features with the size
N×Cout, whereN is the numbers of input points and Cout

denotes the channels in the output features. For the fol-
lowing SA layer, the input feature size is N × C

′

in and the
output size is Ns × C

′

out, where Ns indicates the number
of sampled points, and C

′

in, C
′

out are the input and output
feature channels respectively. Obviously, C

′

in = Cout and
we set C

′

out = C
′

in for simplicity. In our experiment, we
choose Ns = 450 sample points and each point locates 5
neighboring points for local feature extraction. Overall, we
list these parameters of our discriminator in table 1. For the
shape-wise branch in the discriminator, the sizes of three
fully-connected layers are 1024, 512 and 128 respectively.

Generator The z and z
′

in our experiments are both
Gaussian noise with mean µ = 0, variance σ = 0.2 and the
size of z is 1 × 128. In the upsampling module of the first
generator, there are five upsampling layers, and the over-
sampling layer in our architecture is another upsampling
layer. For a better overview, we list their parameters to-
gether in table 2. For the second generator, we embed the
dense input points from generator one into high dimensional
space using a way similar to the discriminator and the sizes
of four fully-connected layers are 256, 256, 256 and 2048*3
respectively. In the loss L̂gen2, we set λ1 = λ2 = 1.0.

Index
MLP Block SA Layer

Cin Cout C
′

in C
′

out Ns nk

1 3 128 128 128 450 5
2 128 256 256 256 450 5
3 256 512 512 512 450 5
4 512 1024 1024 1024 450 5

Table 1. The details of discriminator parameters in our experi-
ments. There are four combinations of MLP block and SA layer
in the architecture, thus the “index” is from 1 to 4. The nk denotes
the number of neighbors for each sampled point in the SA layer.

Generator one inupt output k

upsampling layer 1 1× 128 1× 128 1
upsampling layer 2 1× 128 2× 256 2
upsampling layer 3 2× 256 16× 512 8
upsampling layer 4 16× 512 256× 128 16
upsampling layer 5 256× 128 2048× 64 8
oversampling layer 2048× 64 8192× 3 4

Table 2. The details of the first generator parameters in our exper-
iments. The “input” and “output” stand for the input and output
feature size of this layer. k denote the upsampling rate. The prod-
uct of first five upsampling rates is 2048, which is the same as the
number of input points, and the overall product of all layer upsam-
pling rates in the table is 8192.

2. Results Gallery
In this section, we show more generated results of our

method in Fig.1.

References
[1] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), pages 5099–5108, 2017.
1

1



Figure 1. Examples of point cloud generated by our model. From top to bottom: chair, car and airplane.

2


