
7. Appendix
7.1. Active Surface Model: Continuous

Formulation

Our objective is to minimize the total energy E in Eq. 2.
There is no analytical solution for the global minimum of
E. But, as mentioned in Section 3.1, any local minimum
must satisfy the associated Euler-Lagrange equation given
in Eq. 4. To find a surface that does this, surface evolution
is used by introducing a time t parameter into 4 and writing

∂v(s, r, t; Φ)

∂t
+ L(v(s, r, t; Φ)) = F (v(s, r, t; Φ)) , (14)

where L(v(s, r, t; Φ)) is the R.H.S of Eq. 4.
Solving 14, requires specifying an initial surface. Earlier

approaches [9, 19] used a manual initialization, whereas
in [27, 5] another model is used to predict the initial curve.
To ensure the reached local minima corresponds to the
desired curve, these approaches require the initialization
to be close to the target shape. In DASM, we rely
instead on the graph-convolution layers to provide a good
initialization.

7.2. Active Surface Model: Discrete Formulation
In the continuous formulation of Section 3.1, computing

the solution to Eq. 4 requires computing the derivatives of
order 2 and 4 for the mapping v of Eq. 1. To compute
them in practice, we discretize the surface and use finite
difference equations to estimate the derivatives. Given a
small value of δs, finite-difference approximations for the
derivatives w.r.t s can be written as,

∂v

∂s
≈ 1

δs
[v(s+ δs, r)− v(s, r)] ,

∂2v

∂s2
≈ 1

δs2
[v(s+ δs, r)− 2v(s, r) + v(s− δs, r)] ,

∂3v

∂s3
≈ 1

δs3
[v(s+ 2δs, r)− 3v(s+ δs, r)

+ 3v(s, r)− v(s− δs, r)] ,
∂4v

∂s4
≈ 1

δs4
[v(s+ 2δs, r)− 4v(s+ δs, r)

+ 6v(s, r)− 4v(s− δs, r) + v(s− 2δs, r)] ,

Similarly, we can write finite difference equations w.r.t r as
well.

Now to compute these approximations, we need to
compute v(s + δs) and other similar terms. Let us
therefore take (s, r) be the 2D coordinates that v maps to
the coordinates of a specific vertex. In an irregular grid,
(s, r+δr), (s+δs, r), or any of s, r coordinates that appear
in the derivative computations will in general not be be
mapped to another vertex for any choice of δs, δr. Fig. 8
illustrates their actual positions depending on the number
of neighbors the vertex has.

Figure 8: Finite Differences. Relative positions of (s +
k1δ, r + k2δ) terms w.r.t (s, r) which is at the center and its 1-
ring neighbors from degree 4 to 10.

We can nevertheless compute the 3D coordinates they
map to as follows. Let us first consider the 3D point v(s +
δs, r) that (s + δs, r) gets mapped to and it is depicted by
orange circle in Fig. 2. For δs small enough, it belongs
to a facet of which v(s, r) is a vertex and let v(s1, r1) and
v(s2, r2) be the other two. We can compute the barycentric
coordinates λ, λ1, and λ2 of v(s + δs, r) in that facet by
solving s+ δs

r
1

 =

s s1 s2

r r1 r2

1 1 1

 λλ1

λ2

 . (15)

Given these barycentric coordinates, we can now estimate
v(s+ δs, r) as

λ ∗ v(s, r) + λ1 ∗ v(s1, r1) + λ2 ∗ v(s2, r2) , (16)

which allows us to estimate ∂v
∂s according to the above

finite-difference equations. For this approximation to be
valid, we pick δs such that all terms in finite-difference
expressions lie within the 1-ring neighborhood of v(s, r).
We can repeat the process for all the other expressions
involving δs in these equations and, hence, compute all
required derivatives. Regular square and hexagonal grids
are special cases in which these computations can be
simplified.

7.3. Matrix Inversion using Neumann Series

We are approximating the inverse of (A + αI)−1 using
the Neumann series given in Eq. 7. In Fig 9, we plot both



RMSE in estimating the inverse and the time it takes to
perform the estimation as a function of K. Given the trade
off between running time and accuracy, we pick K = 4 for
the estimation.

Figure 9: Neumann Series Approximation. RMSE between the
approximated inverse and the true one in blue and computation
time in red as function of K. K = 4 gives an acceptable trade-off
between the two.

7.4. Quantitatively Measuring Mesh Regularization
with Consistency Metrics

All the metrics used in Sec. 4 evaluate the accuracy of the
meshes. We use them because they are the standard metrics
used in the literature. But to get a better understanding of
the quality of the meshes, we provide two more metrics;
mean edge length and mean surface Laplacian. We observe
that around abnormalities such as those highlighted by
orange arrows in Fig. 5, 7, the edge lengths and surface
Laplacians tend to increase significantly. This increases
mean edge length and mean surface Laplacian and its effect
can be seen in Table 7.

λe. Chf. (↓) Edg. Length Surf. Lap.

1.0
Mesh R-CNN 0.232 0.023 ± 0.011 0.033 ± 0.031
Ad.-DASM 0.231 0.022 ± 0.009 0.023 ± 0.019

0.6
Mesh R-CNN 0.212 0.024 ± 0.015 0.045 ± 0.045
Ad.-DASM 0.206 0.023 ± 0.011 0.029 ± 0.020

0.2
Mesh R-CNN 0.189 0.028 ± 0.021 0.066 ± 0.075
Ad.-DASM 0.183 0.025 ± 0.015 0.037 ± 0.049

0.0
Mesh R-CNN 0.144 0.141 ± 0.142 0.708 ± 0.671
Ad.-DASM 0.167 0.070 ± 0.072 0.254 ± 0.276

Table 7: Results on ShapeNet as a function of λedge. Note that
this is an extension of Table 2.




