A. Additional Experiments

A.1. Detailed description of Shapenet Experiment

Many of the methods we compared against on Shapenet have tunable parameters which can drastically alter the quality of
reconstructed outputs. To ensure a proper comparison, we ran sweeps over these parameters where appropriate choosing the
best reconstruction for each model under both metrics (Chamfer and IoU). For our method we did no parameter sweeps, using
no regularization and 1024 Nystrom samples for each model in the dataset. We describe the exerimental methodology for each
method in the benchmark below.

Implicit Geometric Regularization [24] We trained each model for 5k iterations with Adam and a learning rate of 0.001
using the same parameters and architecture as proposed in the original paper. We included the normals in the loss with the
parameter 7 set to 1. The Eikonal regularization term A was set to 0.1. While IGR can slightly improve by using a very
large number of iterations. doing so is prohibitively slow over many models. Figure 8 motivates our choice of iterations,
demonstrating only a slight improvements between 5k and 100k iterations (the latter which required 2 hours of fitting on a
NVIDIA-1080-Ti GPU).

Screened Poisson Surface Reconstruction [31] We considered every possible combination of the following parameters:
the octree depth in [6, 7, 8, 9], the number of points per leaf in [1,2, 3, 5, 10], the point weight (which controls the degree to
which the method interpolates the input) in [4.0, 100.0, 1000.0]. Since all the shapes in the benchmark are watertight meshes,
we used Dirichlet boundary constraints for the reconstruction.

SIREN [40] We trained used a SIREN network with 4 hidden layers each containing 256 neurons for 5000 iterations, using a
learning rate of le-4 using Adam. We used a loss function which encouraged samples at the points to have zero value, and a L2
loss on the gradient of the function and the normals at the points. We trained both with and without an eikonal regularization
term ((||Vf(x)|| — 1)?) and found that results improved with the eikonal term.

Fourier Feature Networks [42] We used an 8-layer ReLU MLP with 256 Fourier features sampled from a Gaus-
sian distribution. This is the same architecture as the shape representation experiment in the original paper. For
each model in the benchmark, we did a parameter sweep on the variance o of the Gaussian distribution, considering
o € {0.1,0.25,0.5.0.6,0.7,0.8,0.9,1.0,1.25, 1.5, 3.0}. The range of parameters was chosen by empirical verification on 3
models from the airplanes, benches, and cars categories.

SVR [22] As in the original paper, we use a Gaussian kernel to perform support vector regression. To generate occupancy
samples, we augmented the input points with an “inside* and “outside* point by perturbing them by +e¢ along the normal
at that point. We used e = 0.01 forall the models. For each model we did a joint parameter sweep over the regularization
parameter C' € {1.0,0.1,0.01,0.001,0.0001} and the variance parameter o € {0.002.0.001,0.0004,0.0002,0.0001}. The
range of parameters was chosen by empirical verification on 3 models from the airplanes, benches, and cars categories.

Biharmonic RBF [9] To generate occupancy samples, we augmented the input points with an “inside* and outside* point
by perturbing them by =+ € along the normal at that point. We used € = 0.01 for all the models. The biharmonic function is
very simple ¢(r) = r where r = ||z; — x;|| and does require tuning parameters.

A.2. Detailed Description of Surface Reconstrucion Benchmark Experiment

For the surface reconstruction benchmark we only included comparisons against neural network based methods since [44]
performed an extensive comparison against traditional methods and clearly established itself as superior. We used the same
experimental setup and parameter sweeps as in the Shapenet benchmark (Section A.1) for IGR, SIREN and Fourier feature
networks. We verified that the range of parameters used for Fourier feature networks was valid by qualitative verification
on the models (there are only 5 so this is straightforward). For our method we use 15000 Nystrom samples. Additionally,
since noise is present in the input data, we performed a modest parameter sweep over regularization parameters considering
A € {0,1e—13,1e—12,1e—11,1le—10}. We remark that a full parameter sweep with our method requires less time than
fitting a single model with competing methods (See timings in Section A.5).

A.3. Additional Figures

Figures 10 and 11 show at least one model reconstructed from each ShepeNet category using our method, Implicit Geometric
Regularization (IGR) [24], SIREN [40], Fourier Feature Networks (FFN) [42], Screened Poisson Surface Reconstruction [31],
Biharmonic RBF [9], and Support Vector Regression (SVR) [22]. Figure 12 shows the reconstructions of all the models from
the Surface Reconstruction Benchmark [5] using our method, IGR [24], SIREN [40], and Fourier Feature Networks [42].



Ours IGR SIREN Fourier Feats Poisson Biharmonic SVR

Figure 10. Comparisons between reconstruction techniques on Shapenet models. The blue points are the input points to the reconstruction
algorithm.



Ours IGR SIREN Fourier Feats Poisson Biharmonic SVR

Figure 11. Comparisons between reconstruction techniques on Shapenet models. The blue points are the input points to the reconstruction
algorithm.
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Figure 12. Comparisons between reconstruction techniques on the Surface Reconstruction Benchmark models. For techniques requiring
parameter sweeps, we show the result with the lowest Chamfer Distance.



A.4. Quantitative Results Per ShapeNet Class

Tables 4 show the per ShapeNet category IoU and Chamfer distance statistics for the benchmark described in Section 4.1.

Intersection over Union (IoU)

SIREN [40] Fourier Feat. Nets [12] Biharmonic RBF [] SVR [27] Screened Poisson [31] IGR [21] Ours

Class mean median std mean median std mean median std mean ‘median std mean median std mean median std mean median std
car 0.7331 0.7385 0.1134 0.8106 0.8238 0.0858 0.8656 0.9020 0.1004 0.7903 0.8065 0.0773 0.6637 0.7192 0.1255 0.8102 0.8459 0.1236 0.9082 0.9399 0.0747
chair 0.8143 0.8304 0.0665 0.8202 0.8450 0.0675 0.8428 0.8667 0.0824 0.8127 0.8389 0.0839 0.5880 0.6046 0.1243 0.8216 0.8654 0.1139 0.9056 0.9369 0.1062
airplane 0.7410 0.7572 0.0764 0.6811 0.6970 0.0481 0.6690 0.7064 0.0809 0.6016 0.6257 0.0611 0.5954 0.6139 0.0581 0.7804 0.8161 0.0913 0.7773 0.8796 0.1961
display 0.8512 0.8663 0.0531 0.8651 0.8669 0.0323 0.8470 0.8593 0.0738 0.8307 0.8407 0.0722 0.7027 0.7072 0.0800 0.8673 0.8990 0.0690 0.9533 0.9549 0.0188
table 0.7562 0.7535 0.0787 0.7776 0.7751 0.0688 0.7096 0.7350 0.1150 0.6779 0.6596 0.1127 0.3720 0.3565 0.1334 0.7747 0.7772 0.0742 0.8968 0.9011 0.0500
rifle 0.8088 0.8442 0.0840 0.7595 0.7666 0.0726 0.8350 0.8447 0.0845 0.7764 0.8013 0.0970 0.6803 0.6791 0.0532 0.8381 0.8479 0.0568 0.9489 0.9491 0.0169
cabinet 0.8592 0.8687 0.0813 0.8885 0.8922 0.0686 0.8913 0.9206 0.0926 0.7268 0.7142 0.0740 0.7301 0.7764 0.1095 0.8853 0.8916 0.0782 0.9478 0.9467 0.0377
loudspeaker 0.8681 0.9094 0.0873 0.8900 0.9226 0.0758 0.9076 0.9621 0.1067 0.7098 0.6956 0.1193 0.7432 0.7848 0.1309 0.8595 0.9452 0.2038 0.9507 0.9768 0.0518
telephone 0.9088 0.9183 0.0536 0.9104 0.9156 0.0461 0.9286 0.9433 0.0662 0.9195 0.9399 0.0638 0.7883 0.7990 0.0552 0.9148 0.9372 0.0639 0.9746 0.9772 0.0202
bench 0.6146 0.6884 0.1853 0.6685 0.6765 0.1488 0.6237 0.6592 0.1682 0.6052 0.6282 0.1487 0.4728 0.4384 0.1213 0.5862 0.6394 0.2486 0.8160 0.8900 0.1365
sofa. 0.8704 0.8954 0.0589 0.8811 0.9043 0.0553 0.9164 0.9377 0.0630 0.8694 0.8791 0.0740 0.7122 0.7326 0.0662 0.8870 0.9210 0.1211 0.9565 0.9644 0.0267
watercraft 0.7600 0.7989 0.1147 0.8160 0.8187 0.0570 0.8557 0.8756 0.0768 0.8197 0.8379 0.0742 0.6523 0.6793 0.0994 0.8272 0.8537 0.0845 0.9340 0.9380 0.0462
lamp 0.8104 0.8143 0.0833 0.8178 0.8334 0.0729 0.8282 0.8706 0.1155 0.7728 0.7907 0.0963 0.5413 0.5786 0.1858 0.8251 0.8352 0.1093 0.9467 0.9470 0.0306
All Classes: 0.7997 0.8248 0.1203 0.8143 0.8321 0.1047 0.8247 0.8642 0.1350 0.7625 0.7819 0.1300 0.6340 0.6728 0.1577 0.8213 0.8566 0.1461 0.9167 0.9438 0.0985

Chamfer Distance (CD)
SIREN [40] Fourier Feat. Nets [17] Biharmonic RBF [V] SVR [27] Screened Poisson [1] IGR [21] Ours

Class mean ‘median std mean ‘median std ‘median std mean ‘median std mean ‘median std mean ‘median std ‘median std
car 1.54¢-4 1.53¢-4 4.10e-5 1.20e-4 1.13e-4 3.10e-5 1.00e-4 5.23e-5 1.23e-4 1.18e-4 3.90e-5 2.27e-4 2.22e-4 8.04e-5 2.60e-4 2.82e-4 9.80e-5 7.23e-5 3.59¢-5
chair 1.04e-4 8.55e-5 4.64e-5 1.01e-4 8.82e-5 4.25e-5 9.60e-5 6.11e-5 1.11e-4 1.01e-4 5.66e-5 2.82e-4 2.13e-4 1.84e-4 9.25¢-4 9.88e-5 3.11e-3 4.20e-5 4.01e-5
airplane 9.96e-5 8.22¢-5 6.44e-5 1.03e-4 1.07e-4 1.24e-5 1.31e-4 3.07e-5 1.61e-4 1.66e-4 1.01e-5 8.37e-5 8.76e-5 1.77e-5 3.04e-4 3.45e-5 2.45¢-6
display 7.96e-5 7.94e-5 2.46e-5 7.76e-5 7.42-5 2.45¢-5 9.06e-5 3.42-5 9.86e-5 1.0le-4 3.35¢-5 2.45¢e-4 2.13e-4 1.11e-4 9.99¢-5 3.95e-5 1.24e-5
table 1.06e-4 9.34e-5 4.62e-5 1.03e-4 9.49¢-5 3.74e-5 1.91e-4 8.62¢-5 1.66e-4 1.60e-4 6.73e-5 3.50e-4 2.53¢-4 2.14e-4 3.40e-4 4.78e-5 4.01e-5
rifle 5.10e-5 4.69-5 1.36e-5 7.10e-5 6.67e-5 1.60e-5 5.00e-5 9.36e-6 7.20e-5 7.12e-5 1.46e-5 4.46e-5 3.11e-5 2.76e-5 9.62e-5 3.16e-5 2.8le-6
cabinet 1.19e-4 9.30e-5 5.53e-5 1.04e-4 8.76e-5 3.93e-5 1.19e-4 7.8le-5 1.34e-4 1.30e-4 8.27e-5 3.62e-4 1.56e-4 4.67e-5 4.30e-5
loudspeaker 1.31e-4 1.00e-4 7.97e-5 1.08e-4 9.11e-5 5.48¢e-5 7.94e-5 1.16e-4 1.36e-4 9.91e-5 1.02¢-4 4.29¢-4 3.77e-3 4.58e-5 7.24e-5
telephone 5.6le-5 4.77e-5 1.86e-5 4.8%-5 4.55¢-5 1.20e-5 4.04e-5 2.93e-5 4.77e-5 4.06e-5 2.19e-5 1.28e-4 1.03e-4 3.18e-5 3.42e-6
bench 1.28e-4 1.27e-4 5.44e-5 9.38e-5 9.76e-5 2.26e-5 1.73e-4 49le-5 1.34e-4 1.41e-4 3.05e-5 1.93e-4 4.48e-4 = X 4.74e-5 2.05e-5
sofa. 8.99e-5 8.52e-5 1.97e-5 9.6%-5 9.74e-5 2.14e-5 7.72e-5 3.17e-5 9.46e-5 9.02e-5 3.39%-5 2.72e-4 2.86e-4 1.02e-4 5.30e-4 5.08e-5 4.81e-5 1.22e-5
watercraft 8.71e-5 7.93e-5 3.3le-5 8.89e-5 8.48e-5 2.00e-5 6.73e-5 3.89-5 9.47e-5 8.56e-5 3.07e-5 1.07e-4 1.47e-4 1.12e-4 1.23e-4 4.4le-5 3.84e-5 1.42e-5
lamp 1.05e-4 9.05e-5 5.19e-5 7.96e-5 8.33e-5 1.53e-5 8.05e-5 4.8le-5 1.10e-4 1.02e-4 4.26e-5 1.61e-4 1.72e-3 1.28e-4 6.24e-3 4.15e-5 3.8%-5 9.6le-6
All Classes: 1.01e-4 8.62e-5 5.40e-5 9.19e-5 8.68e-5 3.47e-5 8.97e-5 7.06e-5 1.14e-4 1.04e-4 5.99¢-5 2.22e-4 6.66e-4 1.07e-4 4.69e-3 5.32e-5 4.07e-5 3.53e-5

Table 4. Quantitative comparison of the Intersection over Union (IoU) Distance and Chamfer Distance (CD) between SIREN [40], Biharmonic
RBF [9], Implicit Kernel SVR [22], Screened Poisson Surface Reconstructin [31], IGR [24] and our method over a subset (20 models per
class) of the ShapeNet dataset. For each method we did a sweep over a range of parameters choosing the best result for each metric. We did
no such tuning for our method.

A.5. Per Model Performance Numbers

Table 5 shows the runtime and GPU usage required to reconstruct each model in the Surface Reconstruction Benchmark.
For our model, we used 15k Nystrom samples and a regularization of le-11. We do not report CPU memory usage since it is
hard to profile exactly, however we observed that none of the methods used more than 4GiB of CPU memory. All timings
were done on a machine with a single NVIDIA-V100 GPU with 16GiB of VRAM, 32GiB of CPU RAM, and and an 8 core
Intel Xeon processor.

Method Runtime (seconds) GPU Memory
IGR [24] 1726.84 5093
SIREN [40] 183.60 1855
Anchor FFN [42] 385.90 4266
Poisson [31] 2.35 N.A.
Ours 13.22 5528
IGR [24] 1239.43 5093
SIREN [40] 135.46 1855
Daratech FEN [42] 281.61 4266
Poisson [31] 1.83 N.A.
Ours 10.75 5528
IGR [24] 1443.65 5093
SIREN [40] 155.91 1545
DC FEN [42] 325.10 3565
Poisson [31] 1.41 N.A.
Ours 12.31 5510
IGR [24] 1646.44 5093
SIREN [40] 203.71 2076
Gargoyle FEN [42] 432.59 4778
Poisson [31] 1.44 N.A.
Ours 12.87 5145
IGR [24] 1013.33 5093
SIREN [40] 128.38 1237
Lord Quas FEN [42] 263.34 2870
Poisson [31] 1.21 N.A.
Ours 10.41 5281

Table 5. Runtime and GPU memory usage of different methods when reconstructing models from the Surface Reconstruction Benchmark [5].



A.6. Empirical versus Analytical Kernel

Figure 14 compares results using the empirical kernel with m neurons and using the analytical kernel. Figure 13 shows the
convergence of the empirical Kernel to the analytic one as the number m of neurons grows.
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Figure 13. Convergence of the empirical kernels to the exact ones. Both the Gaussian (left) and Uniform (right) kernels are rotation invariant
and thus depend only on the angle <((z, =) between z and z’. This plot shows the value of the kernel as a function of this angle from 0 to 7
(we show here only the scalar term of the kernel E(, 1) [az + b+ [az’ + b]4).
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Figure 14. The effect of using an approximate kernel with m neurons to do reconstruction. Increasing m makes the approximation closer to
the analytical version.

A.7. Quantitative Comparison between Gaussian and Uniform Kernels

Table 6 shows a quantitative comparison between Neural Splines using the Gaussian initialization (9) and the Uniform
initialization (8) on the benchmark described in Section (4.1). The results in both cases are very close to each other in both
Chamfer distance and in IoU.



Intersection over Union (IoU)

Neural Spline (Uniform) Neural Spline (Gaussian)

Class mean median std mean median std
car 0.9082 0.9399 0.0747 0.9084 0.9392 0.0743
chair 0.9056 0.9369 0.1062 09131 0.9357 0.0852

airplane 0.7773 0.8796 0.1961 0.8388 0.9159 0.1531
display 0.9533 0.9549 0.0188 0.9523 0.9535 0.0193
table 0.8968 0.9011 0.0500 0.8952 0.8980 0.0508
rifle 0.9489 0.9491 0.0169 0.9488 0.9498 0.0185
cabinet 0.9478 0.9467 0.0377 0.9477 0.9475 0.0377
loudspeaker || 0.9507 0.9768 0.0518 0.9500 0.9768 0.0531
telephone 0.9746 0.9772 0.0202 0.9741 0.9774 0.0209

bench 0.8160 0.8900 0.1365 0.8195 0.8902 0.1296
sofa 0.9565 0.9644 0.0267 0.9584 0.9643 0.0221
watercraft 0.9340 0.9380 0.0462 0.9360 0.9386 0.0404
lamp 0.9467 0.9470 0.0306 0.9457 0.9459 0.0319

All Classes: 0.9167 0.9438 0.0985 0.9221 0.9441 0.0834

Chamfer Distance (CD)
Neural Spline (Uniform) Neural Spline (Gaussian)
Class mean median std mean median std
car 8.21e-05 | 7.23e-05 | 3.59e-05 | 8.21e-05 | 7.18e-05 | 3.60e-05
chair 5.52e-05 | 4.20e-05 | 4.01e-05 || 5.62e-05 | 4.21e-05 | 4.32¢-05

airplane 3.55e-05 | 3.45e-05 | 2.45e-06 || 3.55e-05 | 3.44e-05 | 2.45e-06
display 4.31e-05 | 3.95e-05 | 1.24e-05 | 4.36e-05 | 3.99e-05 | 1.28e-05
table 6.44e-05 | 4.78e-05 | 4.01e-05 || 6.60e-05 | 4.88e-05 | 4.17e-05
rifle 3.27e-05 | 3.16e-05 | 2.81e-06 || 3.26e-05 | 3.15e-05 | 2.79e-06
cabinet 6.93e-05 | 4.67e-05 | 4.30e-05 || 6.98e-05 | 4.69¢-05 | 4.34e-05
loudspeaker || 8.27e-05 | 4.58e-05 | 7.24e-05 || 8.41e-05 | 4.54e-05 | 7.54e-05
telephone 3.33e-05 | 3.18e-05 | 3.42e-06 || 3.34e-05 | 3.19e-05 | 3.60e-06
bench 5.62e-05 | 4.74e-05 | 2.05e-05 || 5.66e-05 | 4.82e-05 | 2.09e-05

sofa 5.08¢-05 | 4.81e-05 | 1.22e-05 || 5.11e-05 | 4.80e-05 | 1.24e-05
watercraft 4.41e-05 | 3.84e-05 | 1.42e-05 || 4.41e-05 | 3.84e-05 | 1.42e-05
lamp 4.15e-05 | 3.89e-05 | 9.61e-06 || 4.19¢-05 | 3.91e-05 | 1.00e-05

All Classes: || 5.32e-05 | 4.07e-05 | 3.53e-05 || 5.36e-05 | 4.06e-05 | 3.64e-05

Table 6. Comparison of IoU and Chamfer Distance between Neural Splines with Gaussian and Uniform kernels on the benchmark described
in Section 4.1. We remark that both kernels yield extremely close results.

B. Derivation of the Infinite Width Kernels
B.1. Uniform Initialization

We derive an explicit expression for the kernel K, in (5) in the case of uniform initialization (8). We first prove the
following Lemma which we will use in our calculations.

Lemma 5. Assume that F : R x R — R is such that F(ks, kt) = k" F(s,t) for some r and any k > 0. For any x,z’ € R?
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Proof. If Q € SO(d) then by change of variables a = QT a we have that

/ aa F(aTz,aT2")dQ = / QTaa” QF (T Qx,aT Qa')dQ
aeSd—1 aeSd-1

=Q7 < / aa’ F(a'z, a%')dQ) Q,
aeSd—1

where # = (Qz. Without loss of generality we thus assume that z = (0,...,[z][,0)7 and 2’ =
(0,...,[|2'|| cos(a), ||2’|| sin(e))” where a = arccos(z”a'/||z|||2’||) € [0,7]. We now adopt hyperspherical coordi-
nates (61, ...604_2,1) where 6; € [0, 7] and ¢) € [0, 27]. The conversion between cartesian and spherical coordinates is given
by:

a1 = cos(67)

as = sin(67) cos(6)

ag—1 = sin(fy) . ..sin(04—2) cos(v))
ag = sin(fy) . ..sin(f4_2) sin(¢))
We also have that
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This is now a product of d — 1 one-dimensional integrals. Since fow sin® = 0 if s is odd, we have that the integral (18) vanishes
if i # j. If instead ¢ = j, we use the fact that

g — ! if s i
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0 (s+2)!! |2 ifsisodd

and we deduce that
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This proves the diagonal part in our express10n for [ aa” F(a”x,a™2")dS). All remaining terms as well as the two integrals
JaF (a”x,aT2")d2 and J F( (a”x,a™2")dS2 follow from very similar (and slightly simpler) calculations. O

We now apply Lemma 5 to compute the kernel K, with the uniform initialization (8).

Proposition 6. [fa ~ U(S? ) and b ~ U([~k, k]) and ||z||, ||2'|| < k then
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where a = arccos( @’ ) T = arctan <z”|ww§a)> Q € SO(d) is such that Qz = (0,...,||z|,0)",Qz" =

[EE [[="[] sin()

0,...,|1z']| cos(a), ||2’|| sin())T and

B ol 217 1%52) if r is even,
fhd ZL%JH%] if ris odd.



1 ,. . 1 . . .
Ei= ¢ (sin (1)* — 3 sin (¥)) [|=[* + 2 )1 *[|2"[|(3 sin (¢ + a) + sin (3¢ — @) + 6 sin (Y — @)
1 . ’ 1 . . .
Esy = 18 (sin (v — a)3 — 3 sin (¢ — a)) |z H3 + 21 HmHHm/HQ(sm (3Y — 2a) 4 3 sin (¢ — 2a) + 6 sin (¥))
1 . . 1 . 1 .
Gi= 3 [[]|* sin () — ||z[|* sin (1) + > [[][]«"]| sin (a + 7) + 5 [J[[[]«"]| sin (—c 4 37)
+ el sin (~a+ 7) = < Jla’|*sin (<204 37) — 7 /I sin (<2 +7) — 5 [l sin (1)
1 2 3 1 / 1 / 1 12
G2 = gllz)"cos ()" — 5 lllllz’l| cos (e + 7) — & llzllll2"|| cos (~a+37) + 15 [|27[|" cos (=2 + 37)
— 1121 cos (<20 +7) + 5 |11 cos (7) (20)
[ 1 S LS DU 1 1o T
a= [l sin (%) = 3 [l sin (%) + | 7 e llsin (@ +9) + 75 [la7||sin (3¢ — @) + 5 [l sin (¥ — @)
I 1 3 Thm 1 ’ 1 ’ T
B = —5 llzll cos () + | = [l [ cos ( + ¢) — — ||z’ cos (3¢ — )
73 ) 4 12 o
_1 . 3 Thm 1 / . 1 / . 1 / . T
v = 3 llzll sin (%) + | =g llzlisin (@ +9) — 75 [l sin (3¢ — ) + S [|27| sin (¥ — )
5= [llallsin()]7"" + [[|2'| sin(y — )] T__

Proof. The idea is to compute the integral with respect to the bias term b and then split the result into homogeneous expressions
where Lemma 5 can be applied. In particular, assuming that —k < s,t < k:

k k
I(s,1) :/ [s+b]+[t+b}+db=/ (5 + b)(t + b)db
—k min(s,t)
1 3 1 2 1 . 3 1 . 2 .
=13 E° |+ 3 E*(s+1t) |+ | kst ) + 3 min(s,t)° — B min(s,t)*(s + t) + min(s, t)st |,
—_ Y——
70 I 72 73

where we collected terms that have total degree 0, 1,2, 3in s, t. The computation of |, be[—k k] fa cgd—1 laz+b]4 [ax’+b]dbdQ =
Joega—1 I(a-z, a-2")dQ is now reduced to four one-dimensional integrals of the form fozw (||| cos(), ||2'|| cos(vp — ))dp

where a = arccos (m) The most tedious case is j = 3 where we need to compare ||z|| cos(¢) and ||2'|| cos(¢p + «).

Assuming 0 < o < 7, then ||z cos(v)) < ||2'|| cos(a — ) holds if and only if 7 < ¢ < 7 + 7 where

T = arctan (

]l = 1] Cosa)

||| sin(cr)
From this we obtain that
2T
/ 3l cos(), 1’| cos(a — )y
0
T 1 3 3 1 2 2
= —EIIIE [|? cos(ar —9)” + 3 |2’ |*||z || cos(a — 1p)” cos(v)) | dip

—T

+f W (1|x||3cos<w>3 + L alP /] cos()? cos(ar w>) i
. 6 2

Expanding this integral we obtain the expressions for E(, ;) [ax + b] 1 [az’ 4- b]; in the statement. The remaining integrals are



computed similarly by considering the homogeneous parts of
k k
It(s,t):/ [s+b]+1[s+b]db:/ (5 + b)db
—k min(s,t)
1 2 . 1 . 2
=3 k* 4+ ks + min(s, t)s — 2 min(s, t)

Zs (s, t) = /’“ 1[s + b]1[s + b]db = /lC 1db = k — min(s, t).

—k min(s,t)

B.2. Gaussian Initialization

The Gaussian initialization (9) yields the following simpler formula for K. The first term is well known and is derived
in [15]. The second and third terms are easily derived by taking derivatives of the first term.

Proposition 7. Ifa ~ N(0,Idy—1) and b ~ N(0,1), then

2m - E(q ) laz + b]4 [az” +b]4

12112’ (sin(@) + (7 — &) cos(a))

.’L'/ LL‘/J?/T
21 - Bq,p)[ax + b4 1]az’ + bla = ||Z||(sin(@) + (7 — &) cos(@)) T + (r— &) (Idd — ||j/||2> x
22T (21
2 - E(a7b)1[ax + b]l[afff/ + b]aaT = (7T — d)]d + Sln(d)m
' ||l|z

1 < :E’:U’T) xx'T ( zaT
+ — Idd— = =11 =710 Idd T )
sin(a) 12112/ [1Z][f|2]] 12|

where & = (z,1), 2’ = (2/,1), and & = arccos (Wg‘é,”)

C. Poisson Surface Reconstruction Kernel

In its simplest form, Poisson reconstruction of a surface [31], extracts the level set of a smoothed indicator function
determined as the solution of

—Af=V-V,

where V' is a vector field obtained from normals n,; at samples z;, and we use f to denote the (smoothed) indicator function as
it plays the same role as f in (1). The equation above is closely related to (1): specifically, it is the equation for the minimizer
of [os |Vaf(x) — V||*da, ie., the second term in (1), can be viewed as a approximation of this term by sampling at x;. The
screened form of Poisson reconstruction effectively adds the first term with y; = 0, as the indicator function at points of
interest is supposed to be zero. For the Poisson equation, the solution can be explicitly written as an integral

V. -V(2)dz

R |T— 2|

fx) =

The vector field V is obtained by interpolating the normals using a fixed-grid spline basis and barycentric coordinates of the
sample points with respect to the grid cell containing it. This is equivalent to using a non-translation invariant non-symmetric
locally-supported kernel K5 (z, x):

V(z) = Z Kp(z,z;)n;.

Let By 3(x — ¢;), 2 € R? be the trilinear basis By (' — ¢}) By (2® — ¢) By (2 — ¢}) function centered at a regular grid point
¢;, and B,, 3(x — ¢;) be a tensor-product spline basis function of degree n defined in a similar way. (Note that in Lemma 3



in the main document, we slightly abuse notation, denoting By as the trilinear basis and B,, as the degree-n spline basis).
Poisson reconstruction uses n = 1 or n = 2 where

0 ifz < —1.5
32 if —1.5<2<-05
By(r) = —3+x—(z—1)% if —05<x<05 (22)
S—z+i@-2)? if05<z<15
0 if1.5 <z

Then Kp(z,2) = >, Bis(z — ¢j)By3(z — ¢;j). where only 8 terms corresponding to the vertices ¢; of the grid cube
containing x are nonzero. This yields the following expression for the kernel corresponding to Poisson reconstruction,

V.Kp(z,2')dz
Kpr(z,2")g :/ B(_ )
R3 |z — 2]

i.e., the convolution of the Laplacian kernel 1/|z — z| and the gradient of K 5. Using the identity V(f x g) = (V f % g), we
can write this as the gradient of Kpg(x,2’),, defined as

Kg(z,2')dz

K "=
(2, 2) rs |z — 2|

(23)

To make it easier to understand the qualitative behavior of the kernel, replacing K 5(z, x) with a radial kernel B} (|z — z|),
with qualitatively similar behavior (see Figure 3) yields a translation-invariant radial approximation Kpr' " of the kernel Kpg,
as the convolution of two radial kernels is a radial function.

1 o
Kappmx(:)?,l‘/) _ / Bn(|z T |)dz (24)
R3 |z — 2|

As both B} and the Laplace kernel are radial functions, their convolution is also radial. It can be expressed in a more explicit
form using the relation between Fourier and Hankel transforms for radial functions. For n = 3, the Hankel transform is related
to Fourier transform by [37]

s'2Flgl(s) = (2m)*/*H]g](s)

The Hankel transform is an involution, so the relationship for the inverse Fourier transform is similar. Writing g * h =
F~1[Flg]F[h]], we obtain the expression for the radial convolution in terms of one-dimensional integrals,

KX (1) = H [s73/?9,.[BL])(|z]),

where we use H,.[1/r] = 1/s. and Kg™**(z) is just the gradient of this, i.e., a derivative times |z|/z.
The RKHS norm for the space corresponding to this kernel is given by

_ [ _FUAP
| fll2 = W

with F[K?PP%] obtained using the Hankel transforms as above.

D. RKHS Norm of the Neural Spline Kernel

We now discuss how c¢(a, b) in (12) is related to the Laplacian of the fucntion. If we make the mild assumption that our
functions contain a linear and bias term (Lemma 8), then ¢(a, b) is the Radon Transform of the laplacian of the function. Thus,
the least norm minimizers of the least squares problem (1) are related to the laplacian of the function and the RKHS norm
corresponds to the integral of the laplacian over hyperplanes in the domain. In our experiments, we added an option to include
the linear and bias terms to the solution. They appear to have no effect on the final reconstruction. The derivation below is
borrowed from [35].



Lemma 8. Let fi,,(z) : R? — R be an infinite-width, one hidden layer neural whose weights a, b are distributed according
to the measure c(a,b) : S¥~! x R — R

Jiim(x;¢) = / [aT2 —b]c(a,b)dadb 4+ vz +d. (25)
Sd—1xR
Then, fim(x) can always be rewritten as

/ , [Tz — b ct(a,b)dadb 4+ vz + d’ (26)
Se—1xR

where ¢t (a,b) is an even measure on S*~! x R, v € R%, and d € R.

Proof. We can split the integral in fi;,, into even and odd parts:

1
fime) =5 [ (laTz b+ a7z = )" (0, Ddad
Sd—1xR
1
+ - / ([a¥x — by — [aT2 — b)) (a, b)dadb
2 Sd—1 xR
+ovlz4+d
where ¢ and ¢~ are the even and odd parts of ¢ respectively. Observing that [t], + [—t], = [t| and [t]y — [~t]+ = ¢, we
have that
1
fim(z) = 5 / (Ja"z = ble* (a,b) + (a"z — b)e™ (a,b))dadb +v"z + d 27
Se-1xR
1
=3 /d 1 la”x — b|c(a,b)dadb + vz + d (28)
Sd=1xR
= / [Tz —b)yct(a,b)dadb + vz + d’ (29)
Sd—1xR

where v/ = v + [4 1, pac” (a,b)dadb, d’ = d+ [y, bc™ (a,b)dadb, and the last step holds because ¢ is even. O

Using Lemma 8, we will consider without loss of generality, neural networks of the form (25) with even measures ¢(a, b).
We now give a few useful definitions and lemmas.

Definition 9. Let f : R — R. The Radon Transform of f is

RUY@) = [ fwyista) (30)

T

where ds(z) is a measure on the (d — 1)-hyperplane a* « = b. Intuitively the Radon transform represents a function in terms

of its integrals along all possible hyperplanes.

T T

Remark 10. Since the hyperplane a* © = b is the same as the hyperplane —a* x = —b, the Radon transform is an even

function. i.e. R{f}(a,b) = R{f}(—a,—b).
Definition 11. Let ¢ : S*~! x R — R. The Dual Radon Transform of ¢ is the adjoint of the Radon Transform R

R*{p}t(z) = / o(a,z"a)d (31)

Sd—1

where dS2 is a measure on the (d — 1)-hypersphere S~ Intuitively the Dual Radon transform represents a function at z in
terms of its integrals on all hyperplanes through x.

The Radon Transform satisfies the intertwining property. i.e. for any positive integer s

R{(=A)2 f} = (—03)*R{f} 32)



Lemma 12. (From [41]) If p(a,b) = ¢(—a, —b) is an even function mapping S*1 x R to R which is C> smooth and whose
partial derivatives decrease at a rate faster than O(|b| =) as |b| — oo for any N > 0, then the Dual Radon Transform can

be inverted using
1

WR{(—A)%R*{@}} = (33)

Lemma 13. (From [35]) Let fin(x) : R — R be an infinite-width, one hidden layer neural whose weights a, b are distributed
according to the even measure c(a,b). Then c(a,b) can be expressed as

d+1

c(a,b) = 7aR{(=A)"=" fim(x)},
where R{f}(a,b) is the Radon Transform of f. In particular, for d = 3,
YaR{A fiim(x)} = c(a,b)

Proof. The Laplacian of fi;, in is (25)

§(aTx = b)c(a,b)dadb = / c(a,az)d (34)
S§d—1

Aflim(l“éc) = /

Sd—1xR

which is precisely the Dual Radon Transform of c(a, b). Since c is even, and assuming it decays rapidly with b, we can invert

it using Lemma 12 yielding
d+1

C(a7 b) - ’YdR{(iA)Tflim(x)}‘

Corollary 14. The RKHS norm of the function f, is
1

Il = lle(a, B)lla + [[olle + ] = ( / c(a,bfcmdb) ol + 1d] (35)

SA—1x [—k,k]



