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1. Introduction

In this supplementary material, we provide additional
details in extension to our main paper. This mainly includes
more implementation details (Sec. 2) and additional experi-
mental results (Sec. 3).

2. Implementation Details

The exact details of our network architecture can be ob-
served in Figure 2.

As described in section 3.4 of the main paper, we use
several different error thresholds to generate the auxiliary
training masks. Since for this task it is more important for
the error metric to be semantically consistent instead of very
detailed, we use perceptual error instead of absolute differ-
ences or SSIM. To this end, we employ the first 9 layers
of a pretrained VGG-16 network from the PyTorch model
zoo. The per-pixel error between two images is defined
as the mean squared error between the respective feature
vectors for the respective pixels. The thresholds are as fol-
lows: (1) pels(x, Dy(x)) > 12 (2) pel, (x, Df (x)) > 8 (3)
Di(x) Df(x)
D (x)? Di(x)
ditions are fulfilled a pixel is considered to be moving. To
ensure temporal consistency of the moving object masks,
we match every detected segmentation mask with masks
from the previous and the following frame. The matched
segmentation masks have to be from the same object class
and have a minimum IoU of 0.25. A segmentation mask is
accepted as a moving object, if it itself and the matched seg-
mentation masks contain on average more than 40% moving
pixels.

max{ } > 1.5. If at least two out of these con-

3. Additional Experiments

We provide additional experimental results. This com-
prises more extensive ablation studies (Sec. 3.1) where we
specifically evaluate the performance of the MaskModule.
Furthermore, the effect of different model configurations is

L Model L Prec Rec IoU
Baseline (only ResNet) 0.017 0.658 0.016
Baseline (only cost volume) 0.230 0.642 0.204
Baseline 0260 0.678  0.232
Mask Refinement 0.374  0.748 0.300

Table 1: Ablation Study - MaskModule: Results for the
masks predicted by our MaskModule compared to the aux-
iliary masks on the proposed KITTI Odometry [2] test set
using different versions of our model. Note: The auxiliary
masks can not be compared to ground truth as they them-
selves contain many mistakes (both missed detections and
miss-classifications). Our Baseline model was only trained
with the auxiliary masks. Mask Refinement describes our
model after the mask refinement training. It improves the
performance across all metrics.

evaluated.

We also provide some of the failure cases in which our
method does not achieve optimal performance (Sec. 3.2).

In addition to the qualitative generalization capabilities
of our method presented in the main paper, we also pro-
vide quantitative results obtained from the Oxford Robot-
Car dataset [6] (Sec. 3.3) and the TUM RGB-D dataset [9]
(Sec. 3.4).

In Sec. 3.5, we show the quantitative evaluation against
two other monocular dense reconstruction methods in dy-
namic scenes [/, 8].

3.1. Ablation Studies

In the ablation studies presented in the main paper, we
focused on the overall performance on MVS depth predic-
tion and the contribution of the different components. Here,
we pay attention to the MaskModule and its performance
with respect to masking out dynamic objects. Furthermore,
we evaluation different model configurations.



[ ] Model | AbsRel SqRel RMSE RMSE,, | 6 <125 6<1.25° &< 1.253
(@ | 4Frames 0045 0267 2130 0082 0975 0.991 0.995
6 Frames 0046 0271 2163 0087 0972 0.989 0.995
320x640 0052 0300 2230 0084 0.970 0.990 0.995
KITTI poses 0077 0077 3283 0943 0.943 0.982 0.992
MonoRec 0050 0288 2269  0.082 0972 0.991 0.996
(® | M.D*Baseline | 0059 0494 2764  0.09 0.966 0.987 0.994
MS, D* Baseline | 0054 0346 2444 0088 0.970 0.989 0.995

Table 2: Ablation Study - Model Configuration: Depth prediction results using different model configurations. (a) All
models use the same weights, that were trained with 2 frames, DVSO [10] poses and 256 x 512. (b) Mono vs. Mono + Stereo
training of depth module.

Figure 1: Failure Cases: a) Non-lambertian surfaces, espe-
cially ones that are very close, can lead to mis-predictions
due to a wrong cost volume prior. b) The MaskModule
sometimes detects the focal point, if far away, as a mov-
ing object. The effect is minimal, because these pixels are
not used for reconstruction. c) If the predicted mask does
not cover the moving object entirely, the network might pro-
duce artifacts due wrong cost volume priors.

3.1.1 MaskModule

For MaskModule it is more important to filter out all mov-
ing objects reliably than having a very high precision, since
DepthModule is able to fill out small missing patches in the
cost volume. Therefore, in the trade-off between recall and
precision we put higher emphasis on recall. As baseline we
consider MaskModule only trained based on the the aux-
iliary masks. This baseline is compared against the mask
prediction after refinement training. The baseline already
achieves fairly high recall, however, the precision is not
very strong (see Table 1). Through the refinement training,
which puts the mask prediction into direct context with the
cost volume input, the performance is improved across all
metrics, especially the precision.

3.1.2 Model Configuration

The standard configuration of our model receives a
keyframe and two additional mono frames (the one before
and after the keyframe) at a resolution 256 x 512 as well
as poses generated by DVSO [10] as input. However, our
implementation is very flexible. It can take any number
of frames at any resolution that is a multiple of 16. Fur-

[ Method | AbsRel RMSE | 6<1.25
Monodepth?2 [3] 0.220 7.328 0.616
PackNet [4] 0.233 7.512 0.606
PackNet [4](supervi.) 0.229 7.983 0.620
DORN [1] 0.215 7.966 0.651
DeepMVS [5] 0.142 7379 0.780
DeepMVS [5] (pretr.) 0.153 6.656 0.770
DeepTAM [ 1 1] (only FB) 0.154 7.355 0.776
DeepTAM [11] (1x Ref.) 0.152 7.211 0.749
MonoRec 0.143 7.180 0.806

Table 3: Oxford RobotCar: Quantitative performance of
different models on the Oxford RobotCar dataset. Best /
Second best results are marked bold / underlined.

thermore, the pose source can easily be replaced, e.g. by
another visual odometry (VO) algorithm or other sensors
(e.g. INS). The results in Table 2 shows that by feeding
more frames into the model, one can, in fact, improve the
performance. However, this effect saturates after a certain
number of frames. Interestingly, our model works signifi-
cantly worse with the ground truth poses provided by KITTI
Odometry [2]. We believe that this is because DVSO [10]
computes poses solely based on monocular photometric er-
ror, similarly to the way our cost volume is built. Further-
more, since the ground truth poses in KITTI are obtained
based on an INS system, they might be locally less accurate
than the VO poses and not perfectly synchronized with the
images. Finally, our model does not seem to significantly
benefit from a larger image input size.

3.2. Failure Cases

In Figure 1 we visualize typical failure cases of our
method. Some of the show failure cases, like the ones
caused by non-lambertian surfaces are typical for MVS
methods. Other failures are a result of miss-detections of
the MaskModule. However, at least partially, those miss-
detections can be compensated by our DepthModule.

3.3. Oxford RobotCar Dataset

In Table 3 we show the quantitative results of Oxford
RobotCar generated with the official long sample sequence.
To get the ground truth, we aggregated multiple LiDAR
scans within a range of 0.25s before and after the frame



[ Method | AbsRel RMSE | 6 <1.25
MonoDepth? [3] 0353 1240 | 0458
DeepTAM[11] (IxRef) | 0210 0792 |  0.701
MonoRec 0.8 075 | 0725

Table 4: TUM RGB-D: Quantitative performance of differ-
ent methods on the TUM RGB-D dataset. Specifically, we
evaluate on the freiburg3_long-office.-household S€qUENCE.
Best / Second best results are marked bold / underlined. All
methods are trained on KITTI and MonoRec shows stronger
generalization capability.

[ Method | AbsRel RMSE | <125 |
DenseMono [7] 0.148 2.408 not provided
MonoRec 0.079 1.469 0.949
VideoPopup [8] | 0.154  2.631 0.752
MonoRec 0.054 2.304 0.970

Table 5: Quantitative Results - Further Methods: Com-
parisons of depth evaluation to further methods. Best results
are marked bold. In the comparison to DenseMono [7], se-
quences 11-21 of the KITTI odometry dataset are used. For
the comparison to VideoPopup, sequence 05 of the KITTI
odometry dataset is used.

timestamp and transformed it using the odometry poses.
Note that, due to the short sequence and the low quality
of LiDAR data, one has to consider the provided numbers
with caution. Nevertheless, considering the numbers our
method performs arguably overall the best among all evalu-
ated methods.

3.4. TUM RGB-D

To further demonstrate MonoRec’s generalization capa-
bilities, we also performed quantitative analysis on the in-
door TUM RGB-D [9] dataset using the models trained on
KITTI. Table 4 shows that MonoRec delivers better results
compared to other methods.

3.5. Further Quantitative Evaluations

In Table 5 we show quantitative comparisons to Dense-
Mono [7] and VideoPopup [8]. These methods, like
MonoRec, aim to deliver accurate depths for dynamic
scenes and make use of consecutive frames as input addi-
tional to the keyframe. Both methods employ classical op-
timization methods instead of neural networks. The eval-
uation results suggest that MonoRec performs better than
DenseMono and VideoPopup.
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Figure 2: Detailed Architecture of MonoRec

4




