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A. Additional Implementation Settings

A.1. Image Preparation Details

We calibrate a set of input images using an a Structure-
from-Motion (SfM) algorithm in an open-source software
package COLMAP [4]. For COLMAP, we use a “simple
radial” camera model with a single radial distortion coef-
ficient and a shared intrinsic for all images. We use “sift
feature guided matching” option in the exhaustive matcher
step of SfM and also refine principle points of the intrinsic
during the bundle adjustment. Note that accurate camera
poses and intrinsic parameters are crucial for our method,
and errors in these parameters can lead to poor results.

A.2. Ray Sampling for Training

During training, generating a reasonable sized output im-
age via the rendering equation for all pixels at once is not
feasible due to the memory limit on our GPU. To solve this,
we only sample a subset of pixels from the entire image
in each iteration of the optimization. And to facilitate the
computation of image gradient needed in our loss function,
if a pixel (x, y) is sampled in the process, we also sample
(x+1, y) and (x, y+1) so that the image gradients in both x
and y directions can be computed through finite difference.
In our implementation, we sample 2667 sets of these triplet
pixels, resulting in 8001 samples.

For evaluation, we use 3 metrics: PSNR, SSIM, and
LPIPS. Functions for computing PSNR and SSIM come
from scikit-image software package, and for LPIPS, we use
a VGG variant from [5] 1.

B. Additional Experimental Details

B.1. Comparison on Real Forward-Facing Dataset

Real Forward-Facing dataset is provided by NeRF [3]
and contains 8 scenes. We show a per-scene breakdown of
the results from Table 1 in the main paper in Table B.1.
These scores from NeRF are computed from undistorted
versions of their results using our estimated radial distor-
tion parameter. We provided their original reported scores

1https://github.com/richzhang/PerceptualSimilarity

for reference in Table B.2. A qualitative comparison can be
seen in Figure 3 in the main paper as well as in our sup-
plementary video, which shows that our method achieves
sharper fine detail.

We measured the training time on a single NVIDIA
V100 with a 20-core Intel Xeon Gold 6248. For scene Fern
with 17 input photos, the training took around 18 hours. For
scene Flower with 30 input photos, the training took around
27 hours.

B.2. Comparison on Shiny Dataset

Our own dataset, Shiny, consists of 8 scenes with
more challenging view-dependent effects compared to Real
Forward-Facing dataset. Table B.3 shows the image reso-
lution and number of images for each scene. To generate
results for NeRF, we use the code implemented by the au-
thors2 using TensorFlow and train on each scene with their
default setting for 200k iterations.

We show a per-scene breakdown of the results from Ta-
ble 2 in the main paper in Table B.4. Our approach achieves
better performance than NeRF on all metrics in all scenes.
A full visual comparison is provided in our supplementary
webpage.

B.3. Comparison on Spaces Dataset

The authors of DeepView have not made their code pub-
licly available, but they have released their output results.
So, we run our algorithm on their Spaces dataset and com-
pare our results to theirs. Table B.5 shows a per-scene
breakdown of the results from Table 3 in the main paper.
A full visual comparison is provided in our supplementary
webpage.

B.4. Details for Types of Basis Ablation Study

In Section 4.3.2, we evaluate our algorithm using dif-
ferent sets of basis functions. The experiment is done by
changing the neural basis ~Hφ in Algorithm 1 to other kinds
of basis functions such as ~HFS , ~HTS and ~HSH .

Our Fourier’s basis is similar to the positional encoding

2https://github.com/bmild/nerf
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Table B.1: Per-scene breakdown results from NeRF’s Real Forward-Facing dataset.

PSNR↑ SSIM↑ LPIPS↓
SRN LLFF NeRF Our SRN LLFF NeRF Our SRN LLFF NeRF Our

Fern 20.29 23.09 25.49 25.63 0.700 0.828 0.866 0.887 0.529 0.243 0.278 0.205
Flower 23.94 25.81 27.64 28.90 0.819 0.907 0.906 0.933 0.390 0.168 0.212 0.150
Fortress 25.70 29.56 31.34 31.67 0.816 0.934 0.941 0.952 0.494 0.171 0.166 0.131
Horns 23.15 25.13 28.02 28.46 0.801 0.905 0.915 0.934 0.479 0.197 0.258 0.173
Leaves 17.21 19.85 21.34 21.96 0.556 0.769 0.782 0.832 0.526 0.226 0.308 0.173
Orchids 16.97 18.73 20.67 20.42 0.575 0.703 0.755 0.765 0.528 0.308 0.312 0.242
Room 25.63 28.45 32.25 32.32 0.908 0.957 0.972 0.975 0.351 0.175 0.196 0.161
T-rex 21.71 24.67 27.36 28.73 0.784 0.903 0.929 0.953 0.412 0.204 0.234 0.192

Table B.2: (For reference only) Original reported scores from NeRF [3] where test images are not undistorted.

PSNR↑ SSIM↑ LPIPS↓
SRN LLFF NeRF SRN LLFF NeRF SRN LLFF NeRF

Fern 21.37 21.37 25.17 0.822 0.887 0.932 0.459 0.247 0.280
Flower 24.63 25.46 27.40 0.916 0.935 0.941 0.288 0.174 0.219
Fortress 26.63 29.40 31.16 0.838 0.957 0.962 0.453 0.173 0.171
Horns 24.33 24.70 27.45 0.921 0.941 0.951 0.376 0.193 0.268
Leaves 18.24 19.52 20.92 0.822 0.877 0.904 0.440 0.216 0.316
Orchids 17.37 18.52 20.36 0.746 0.775 0.852 0.467 0.313 0.321
Room 28.42 28.42 32.70 0.950 0.978 0.978 0.240 0.155 0.178
T-rex 22.87 24.15 26.80 0.916 0.935 0.960 0.298 0.222 0.249

used in NeRF [3] and can be computed by:

~HFS(v) =[cos(2−1πvx),sin(2
−1πvx),...,cos(2

Nπvy),sin(2
Nπvy)].

(1)

For forward-facing scenarios, the viewing angle v only cov-
ers a hemi-sphere. So, vz can be fully determined from vx

and vy through vz =
√
1− v2x − v2y , and we can parame-

terize the viewing angle with just vx and vy and define the
FS basis only on these two parameters.

To calculate other basis functions used in Section 4.3.1,
let the following complex-valued functions K(m)

a,b and P
(m)
a,b

be defined as:

K
(m)
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The general form of the set of basis functions is:

~H(v) =
[
Re(K(20)

a,b (v)),

Im(K
(20)
a,b (v)),

Re(P (20)
a,b (v) ·K(20)

a,b (v)),

Im(P
(20)
a,b (v) ·K(20)

a,b (v)),

...,
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a,b (v)),

Im(P
(2N )
a,b (v) ·K(2N )

a,b (v))
]

(4)

where if a = −1, b = 0, then it reduces to the spherical
harmonics basis (SH). If a = 0, b = 0, then it reduces to the
hemispherical harmonics basis (HSH) [1]. For Jacobi basis
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Ground truth Nex (Ours) NeRF

Figure B.1: A qualitative comparison on Shiny dataset between ground truth(left), NeX (center), and NeRF[3] (right). A full
comparison on all scenes can be found in our supplementary webpage

Ground truth Ours NSVF

Figure B.2: A qualitative comparison on scene CD between ground truth (left), NeX (center), and NSVF [2] (right). We use
NSVF code open-sourced by the authors3. NSVF does not perform well for this problem setup because it focuses on object
captures where a bounding volume can be tightly defined.

(JH), we set a = cos(45◦) = 1/
√
2 and b = 2.

Here are examples of the first five terms for each basis
that we use in Section 4.3.1:

~HSH(v) =[vx/2,vy/2,vzvx/2,vzvy/2,(v
2
x−v

2
y)/4,...]
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√
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(5)

Figure 5 in the main paper already shows PSNR scores
of these basis functions. SSIM and LPIPS scores from the
same experiment are shown in figure B.3 and B.4 respec-
tively.
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Table B.3: Image resolution and the number of images for
each scene in our Shiny dataset. For most scenes, only 20-
50 images are enough to produce good results. However,
scenes with complex view-dependent effects like CD re-
quire more images.

image resolution number of images

CD 1008×567 307
Tools 1008×756 58
Crest 1008×756 50
Seasoning 1008×756 45
Food 1008×756 49
Giants 1008×756 32
Lab 1008×567 303
Pasta 1008×756 35

Table B.4: Per-scene breakdown results on our Shiny
dataset.

PSNR↑ SSIM↑ LPIPS↓
NeRF Ours NeRF Ours NeRF Ours

CD 30.14 31.43 0.937 0.958 0.206 0.129
Tools 27.54 28.16 0.938 0.953 0.204 0.151
Crest 20.30 21.23 0.670 0.757 0.315 0.162
Seasoning 27.79 28.60 0.898 0.928 0.276 0.168
Food 23.32 23.68 0.796 0.832 0.308 0.203
Giants 24.86 26.00 0.844 0.898 0.270 0.147
Lab 29.60 30.43 0.936 0.949 0.182 0.146
Pasta 21.23 22.07 0.789 0.844 0.311 0.211
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Figure B.3: Number of coefficients versus SSIM score
(higher is better)
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Figure B.4: Number of coefficients versus LPIPS score
(lower is better)
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Table B.5: Per-scene breakdown results on Spaces dataset.

PSNR↑ SSIM↑ LPIPS↓
Soft3D DeepView Ours Soft3D DeepView Ours Soft3D DeepView Ours

scene000 32.66 32.54 37.61 0.971 0.983 0.989 0.093 0.059 0.049
scene009 31.46 31.07 35.40 0.962 0.972 0.981 0.123 0.091 0.080
scene010 32.94 31.22 37.61 0.973 0.979 0.989 0.137 0.095 0.095
scene023 31.52 31.14 35.69 0.969 0.978 0.986 0.142 0.102 0.098
scene024 33.88 33.15 37.77 0.978 0.983 0.989 0.119 0.081 0.090
scene052 30.08 30.22 34.02 0.947 0.971 0.979 0.119 0.081 0.076
scene056 30.64 31.04 34.77 0.956 0.975 0.981 0.141 0.087 0.087
scene062 32.56 32.07 35.34 0.969 0.980 0.984 0.151 0.098 0.121
scene063 29.72 32.72 35.44 0.952 0.979 0.987 0.122 0.078 0.073
scene073 30.28 30.85 34.81 0.960 0.977 0.986 0.111 0.073 0.065
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