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In Sec. A of this appendix, we first derive the closed-
form solution of the 1D Gaussian example from Sec. 3.1.
We then go on in Sec. B and show that restricting px to a
standard normal distribution is absorbed by a single affine
layer in the deep flow model. Next, we provide a derivation
to the DeFlow method with domain invariant conditioning
in Sec. C. We then show in Sec. D that degradations gener-
ated by DeFlow are stochastic and can be sampled at vary-
ing strengths. Further, we provide a visual comparison of
the degradations and more example images of the down-
stream real-world super-resolution (RWSR) performance in
Sec. E. Lastly, we give insight into the set-up of the con-
ducted user study in Sec. F.

A. Closed-Form Solution for the 1D Gaussian
Example

Here we present a detailed derivation for the closed-
form solution to the 1-dimensional Gaussian example from
Sec. 3.1. To recall, we are given two datasets X = {xi}Ni=1

and Y = {yi}Mi=1. We know that x ∈ X are i.i.d. samples
from px = N (µx, σ

2
x). Further, we know that y = x+ u ∈

Y are i.i.d. samples from x ∼ px with additive independent
Gaussian noise u ∼ pu = N (µu, σ

2
u).

The task is to find the parameters θ∗ = {µx, σ2
x, µu, σ

2
u}

that jointly maximize the marginal likelihoods px(X ) and
py(Y).

Proceeding as usual, we apply the i.i.d. property and
minimize the negative log-likelihood w.r.t. θ,
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subject to σx ≥ 0 , σu ≥ 0 . (1)

To ensure the estimated variances are non-negative, i.e.

σx ≥ 0 and σu ≥ 0, we introduce the Lagrange multipliers
λx and λu and have,

l̂(θ) = l(θ)− λxσ2
x − λuσ2

u . (2)

By the Karush–Kuhn–Tucker theorem, θ∗ is a optimal solu-
tion to l(θ) if ∂l̂(θ

∗)
∂θ = 0 while λx ≥ 0, λu ≥ 0, λxσ2

x = 0
and λuσ2

u = 0 hold.

Next, we take partial derivatives of l̂(θ) w.r.t. the indi-
vidual parameters and set them to 0 to obtain the optimal
estimates. First, we differentiate w.r.t. the means µx and
µu, and obtain
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It directly follows, that the optimal estimates of µx and µu
can be written as the empirical means µ̂x and µ̂y ,

µx = µ̂x =
1

N

∑
x∈X

x (5)

µu = µ̂y − µ̂x , µ̂y =
1

M

∑
y∈Y

y . (6)

Now we turn to the estimation of the variances. We first
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obtain the following partial derivatives,

∂l̂(θ)

∂σ2
u

=
1

2(σ2
x + σ2

u)
− 1

2M

∑
y∈Y

(y − µ̂y)2

(σ2
x + σ2

u)2
− λu (7)

∂l̂(θ)

∂σ2
x

=
1

2σ2
x

− 1

2N

∑
x∈X

(x− µx)2

σ4
x

+
1

2(σ2
x + σ2

u)
− 1

2M

∑
y∈Y

(y − µ̂y)2

(σ2
x + σ2

u)2
− λx . (8)

Setting ∂l̂(θ)
∂σ2

u
to 0 and using the complementary slackness

condition that λuσu = 0 must hold at the minimum we
obtain,
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where σ̂y = 1
M

∑
y∈Y(y − µ̂y)2 is used as short-hand no-

tation for the empirical variance of Y .
Similarly, we set ∂l̂(θ)

∂σ2
x

to 0. We first define the empir-
ical variance of X as σ̂2

x = 1
N

∑
x∈X (x − µx)2. By us-

ing the complementary slackness condition and the fact that
∂l̂(θ)
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= 0, we achieve
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Finally, the complementary slackness condition leaves us
with two cases to consider: (1) λu = 0 and (2) σ2

u = 0. In
the former case, it directly follows from (12) and then (16)
that
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In the case of σ2
u = 0, we first obtain from (12) that

2λuσ
4
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Inserting this into (16) gives the desired solution for σ2
x as
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σ2
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The second case thus corresponds to the solution where u is
an unknown constant variable.

B. Closed-Form Solution for the 1-Dimensional
Gaussian Case using DeFlow with a Single
Affine Layer

In our proposed DeFlow method, we restrict the base dis-
tribution px to beN (0, 1), while keeping pu = N (µu, σ

2
u).

We show that a single-affine-layer flow fθ(x) = ax + b is
able to obtain the an optimal solution for the 1-dimensional
Gaussian setting from the previous section under this re-
striction. To do so, we simply set

a =
1

σx
, b = −µx

σx
(24)

where µx and σx are the optimal estimates obtained in the
previous section. Intuitively, we can interpret the single-
layer flow as a learned normalization layer, that ensures a
standard normal distribution in the latent space. To recover
the optimal parameters µ̃2

u and σ̃2
u of pu, we need to adjust

the optimal values retrieved in the previous section accord-
ingly to this normalization and obtain

µ̃u =
µu
σx

, σ̃2
u =

σ2
u

σ2
x

. (25)

This shows that the restriction of px to be standard nor-
mal simply leads to an absorption of the required normal-
ization in an affine layer of the flow model.

C. Derivation of the Domain Invariant Condi-
tional DeFlow Method

To generalize the formulation of DeFlow from Sec. 3.2 to
include the domain invariant conditioning h(x), we extend
the flow network to zx|h(x) = fθ(x;h(x)) and zy|h(y) =
fθ(y;h(y)). By invertibility in the first arguments of fθ,
samples can then be retrieved by

x = f−1θ (zx;h(x)) , y = f−1θ (zx + u;h(y)) (26a)
zx|h(x) ∼ N (0, I) , u ∼ pu = N (µu,Σu) , zx|h(x) ⊥ u .

(26b)

Then, by domain invariance h(x) = h(y), it follows
that we can sample from the conditional distribution
p(y|x, h(x), h(y)) = p(y|x) using

y = f−1θ (fθ(x;h(x)) + u;h(x)) ∼ p(y|x) (27)

where u ∼ N (µu,Σu).
By the change of variables formula, we obtain the differ-

entiable expressions for the conditional marginal distribu-



tions,

p(x|h(x)) =
∣∣detDfθ(x;h(x))

∣∣ · N (fθ(x;h(x)); 0, I)
(28a)

p(y|h(y)) =
∣∣ detDfθ(y;h(y))

∣∣ · N (fθ(y;h(y));µu, I + Σu) .
(28b)

As in the unconditional case, the first factor is given by the
determinant of the Jacobian Dfθ of the flow network, while
the second factor stems from the Gaussian base distributions
from out latent space formulation.

We can then use (28) to allow the optimization of the
new negative log-conditional-likelihood objective

L(θ) = − 1

n

n∑
i=1

ln px(xi|h(xi))−
1

m

m∑
j=1

ln py(yj |h(yj) .

(29)

D. DeFlow Degradation Results
Stochasticity of Degradtations Current GAN based ap-
proaches [1, 2, 5, 3] model the degradation process as a
deterministic mapping, ignoring its inherent stochastic na-
ture. In contrast, DeFlow learns the conditional distribu-
tion p(y|x) of a degraded image y given a clean image x
and thereby allows sampling multiple degraded versions of
a single clean image. As shown in Fig. 1, different degraded
samples from DeFlow feature different yet realistic noise
characteristics without noticeable bias or recurring patterns.
Varying Degradation Strength We further show that De-
Flow can be extended to enable sampling degradations at
different strengths. To do so, we include a temperature pa-
rameter τ that scales the sampled shift-vector u in the latent
space. This extends (8) to

y = f−1θ
(
fθ(x;h(x)) + τu; h(x)

)
. (30)

As shown in Figure 2, setting τ < 1 yields more nuanced
degradations, while τ > 1 amplifies the noise.

E. Visual Comparison
While we compared DeFlow to current methods using

reference and no-reference based evaluation metrics and a
user study, we here provide detailed visual results.
Degradation Results: We thus show examples of the
synthetic degradations generated from different methods in
Figures 4, 6, and 8 for the AIM-, NTIRE-, and DPED-
RWSR datasets. As a reference, we further provide exam-
ples of real noisy image patches from the respective datasets
in Figures 3, 5, and 7. We notice that DeFlow consistently
adds more noise compared to the other methods. Yet, on
all datasets, the degradations from DeFlow resemble the
real noisy data, whereas other learned methods struggle to
pickup on the noise characteristics.

Real-World Super-Resolution Performance: Further,
we provide results of the downstream real-world super-
resolution task of the different methods on the AIM-,
NTIRE-, and DPED-RWSR datasets in Figures 9, 10, and
11, respectively. It is noticeable, that our proposed approach
introduces fewer artifacts than the other methods across all
datasets. Further, DeFlow is able to reconstruct fine details
and provides sharper images than the White Noise model,
which performs surprisingly well on the synthetic datasets.
On DPED, the performance of the DeFlow degradations is
comparable to the handcrafted approach of Impressionism
[2]. While DeFlow retains more noise in smooth patches,
Impressionism tends to over-smooth textures.

F. Details of the User Study
In this section, we give insight into how we conducted

the user study. On AIM and DPED we chose the top 7
models by their LPIPS score to compare in the user study.
On DPED we decided to only compare against Frequency
Separation [1] and Impressionism [2] both with their super-
resolution pipeline and ours, as we found that other methods
performed considerably worse.

For all datasets we used the following set-up for the
user study: Participants were shown the same random crop
from two different super-resolution models. In addition, we
showed them the whole image where the cropped patch was
marked in red. Participants were then asked to pick the
super-resolved patch that looks more realistic. For that we
used three random crops of size 80×80 pixels per image of
each validation dataset and asked five different study partic-
ipants per pair.
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Clean Input Different Samples with τ = 1.0
Figure 1. Multiple degraded samples of a clean input image (left column) using DeFlow on the AIM-RWSR (top two rows) and NTIRE-
RWSR (bottom two rows).

Clean Input τ = 0.33 τ = 0.66 τ = 1.0 τ = 1.33 τ = 1.66

Figure 2. Sampling degradations from DeFlow with increasing temperature τ in (30) on the AIM-RWSR (top row) and NTIRE-RWSR
(bottom row).



Figure 3. AIM-RWSR: examples of noisy image patches.

Clean Input DASR [5] Frequency Separation [1] Impressionism [2] DeFlow (ours)

Figure 4. AIM-RWSR: examples of clean inputs and corresponding synthetically degraded versions from different domain adaption meth-
ods.



Figure 5. NTIRE-RWSR: examples of noisy image patches.

Clean Input CycleGAN [3] Frequency Separation [1] Impressionism [2] DeFlow (ours)

Figure 6. NTIRE-RWSR: examples of clean inputs and corresponding synthetically degraded versions from different domain adaption
methods.



Figure 7. DPED-RWSR: examples of noisy image patches.

Clean Input [3] Frequency Separation [1] Impressionism [2] DeFlow (ours)

Figure 8. DPED RWSR: examples of clean inputs and corresponding synthetically degraded versions from different domain adaption
methods. Note, that we did not include CycleGAN [3] as differing to the other approaches it is trained to degrade images from DIV2k with
DPED noise instead of down-sampled DPED images.



LR White Noise σ=0.04 DASR† [5] Frequency Separation† [1] Impressionism† [2] DeFlow (ours) GT

Figure 9. AIM-RWSR: Super-resolution results on the validation set. Methods marked with † employ the same SR pipeline as DeFlow and
the baselines. Crops were chosen at random for an unbiased comparison.



LR White Noise σ∼U(0, 0.06) DASR† [5] Frequency Separation†[1] Impressionism† [2] DeFlow (ours) GT

Figure 10. NTIRE-RWSR: Super-resolution results on the validation set. Methods marked with † employ the same SR pipeline as DeFlow
and the baselines. Crops were chosen at random for an unbiased comparison.



LR No Degradation [4] CycleGAN [3] Frequency Separation† [1] Impressionism [2] DeFlow (ours)

Figure 11. DPED-RWSR: Super-resolution results on the validation set. Ground truth reference images do not exist for this dataset as it
consists of real-world low-quality smartphone photos. Methods marked with † employ the same SR pipeline as DeFlow and the baselines.
Crops were chosen at random for an unbiased comparison.


