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A. Implementation Details of Experiments
A.1. Training Details and Hyper-parameter Setting

We adopt the WideResNet-34-10 as the model architec-
ture. The initial learning rate is set as 0.1 with a decay factor
of 10 at 60 and 75 epochs, totally 80 epochs. We use the last
epoch for evaluation without early-stop for all the methods.
We use the SGD momentum optimizer with weight decay
set as 2×10−4. We use a batch size of 64 for all the experi-
ments in the main paper. The adversarial training is applied
with the maximal permutation of 8/255 and a step size of
2/255 (0.031 and 0.0078 are used for implementation). The
number of iterations in the inner maximization is set as 5,
and a study on the effect of PGD steps in AT is reported
in Sec. B.2. There are multiple hyper-parameters involved,
where those that control margins or boundary adjustment
are the most critical. Specifically, we adopt m0 = 0.1 for
CIFAR-10-LT and m0 ∈ {0.2, 0.3} for CIFAR-100-LT for
different emphasis (i.e., the trade-off between natural and
robust accuracy). τb − τm = 1.2 in Eqn.10 would basically
produce a good result via training stage re-balancing, while
τb − τm = 0 with τp = 1.5 would also work well based on
pure boundary adjustment at inference time. The optimal
value of τp relies mainly on τb − τm. The ablation study
includes detailed comparisons. Other hyper-parameters are
less sensitive and have relatively small impact on the per-
formance, where we adopt s = 10, γ ∈ {1/32, 1/16}, and
we set α = 6, 3 in Eqn.12 for CIFAR-10-LT and CIFAR-
100-LT, respectively.

A.2. Code References

For the defense methods we compare with, we leverage
the officially released code for them if available, including
TRADES [23] 1, MMA [5] 2, Free [17] 3, and HE [15] 4.

1https://github.com/yaodongyu/TRADES
2https://github.com/BorealisAI/mma_training
3https : / / github . com / mahyarnajibi /

FreeAdversarialTraining
4https://github.com/ShawnXYang/AT_HE

AVmixup [10] are re-implement according to the paper.
For the attacks used for evaluation, we refer to several

officially released code bases and the original papers for the
implementation, including FGSM [7], PGD [13], MIM [6],
C&W [2], and Auto Attack [3] 5.

For the long-tailed recognition methods in Table 1, we
also refer to the official code of them if available.

A.3. Implementation Details of Table 1

In Sec.3.2 of the paper, we revisit and formulate a num-
ber of long-tailed recognition methods. We would report the
hyper-parameters selected for them when combining with
adversarial training framework in our implementation in Ta-
ble 1, where we choose the optimal values by searching the
hyper-parameters with a step size of 1 or 0.1.

B. Extensive Experiments

B.1. Loss Functions in Adversarial Training

In Sec.3, a modified loss function L′CE can be adopted
to AT procedure in three modes: replacing the CE in LA,
LT , or both of them. We study the effect of the three
modes in Table S2. It can be observed that: 1) replacing
CE in LA of the inner maximization would slightly benefit
the natural accuracy with re-weighting [4], class-aware tem-
perature [22], and bias [14, 16], while re-weighting would
hurt robustness in this scenario; class-aware margin [1] is
beneficial to robust accuracy but hurts the natural accuracy
slightly; 2) replacing CE in LT of the outer minimization or
both LA and LT would result in a significantly higher natu-
ral accuracy with class-aware temperature and bias, and the
robust accuracy also raises to some extent.

B.2. Effect of PGD Steps during Training

We use an iteration number of 5 with the step size set as
2/255, approximately 0.0078, for the adversarial training

5https://github.com/fra31/auto-attack
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Table S1. Hyper-parameters selected for LT methods used in Table 1, where we choose the optimal values by searching the hyper-
parameters with a step of 1 or 0.1. * denotes that we use CB-Focal.

Stage Methods Formulation Hyper-parameters

Training

Vanilla FC gi =WT
i f(x) -

Vanilla Cos gi = W̃T
i f̃(x) temperature s = 16

Class-aware margin [1] gi =WT
i f(x)− 1{i = y} · δi δmax = 0.5, δ ∝ n−1/4

Cosine with margin [20, 15] gi = W̃T
i f̃(x)− 1{i = y} ·m m = 0.2, s = 10

Class-aware temperature [22] gi =WT
i f(x) · (ni/nmax)γ γ = 0.3

Class-aware bias [14, 16] gi =Wi
T f(x) + τ log(ni) τ = 1

Hard-example mining [11] r(y) = (1− py)γ , applyed with BCE loss γ = 2

Re-sampling [18] rs(i) ∝ 1/ni -

Re-weighting* [4] r(y) = (1− β)/(1− βny ) β = 0.9999, γ = 2

Fine-tuning

One-epoch re-sampling [8] hi =W ′
T
i f(x), W ′i re-trained with RS -

One-epoch re-weighting [1, 4] hi =W ′
T
i f(x), W ′i fine-tuned with RW β = 0.9999, γ = 2

Learnable classifier scale [8] hi = si ·WT
i f(x), where si is learnable -

Inference

Classifier re-scaling [22, 9] hi = (Wi/n
τ
i )
T f(x) τ = 0.3

Classifier normalization [8] hi = (Wi/ ‖Wi‖τ )T f(x) τ = 2

Class-aware bias [14] hi =WT
i f(x)− τ log(ni) τ = 1

Feature disentangling [19] hi =WT
i (f(x)− α cos(f(x), d) · d) α = 0.1

Table S2. Different loss function applications in adversarial train-
ing. Inner, outer, or both denote to replace Cross-Entropy loss
(CE) in the inner maximization of LA, outer minimization of LT ,
or both of them of Eqn.2 in the paper, respectively. A batch size
of 128 is used here different from the main paper, which does not
affect the relative comparison among them.

Method Apply Clean PGD AA

CE both 62.29 28.14 26.78

Class-aware margin [1]

inner 61.27 28.22 28.23
outer 60.70 28.04 26.75
both 60.79 28.13 26.97

Re-weighting [4]

inner 66.77 22.15 21.07
outer 62.76 32.76 27.77
both 62.78 33.32 27.94

Class-aware temperature [22]

inner 63.98 26.89 25.96
outer 72.93 30.71 29.45
both 72.70 28.26 27.21

Class-aware bias [14, 16]

inner 64.09 27.27 27.31
outer 71.33 29.25 27.82
both 73.00 29.67 28.28

procedure. We adopt this setting for an acceptable balanc-
ing of natural and robust accuracy of the baseline. We study
the effect of PGD iterations and step sizes in Table S3. As
the iteration number increases, the natural accuracy is im-

proved along with the decline of robust accuracy. Espe-
cially for CIFAR-10-LT that when we change from 5 steps
to 7 steps, there is a sharp decrease in clean accuracy. As a
result, we choose a 5-step PGD for the adversarial training
framework in the paper.

Table S3. Effect of different iteration numbers and step size in the
inner maximum of the adversarial training procedure.

Adversarial Training CIFAR-10-LT CIFAR-100-LT

Iterations Step size Clean PGD Clean PGD

1 0.031 64.94 25.39 47.96 14.23
3 0.010 64.03 26.44 47.33 15.32
5 0.0078 62.29 28.14 46.16 15.91
7 0.0078 58.92 29.70 45.23 16.82
10 0.0078 57.61 29.27 45.31 17.40

B.3. Intrinsic Properties among Classes

Apart from the distribution of sample numbers, different
intrinsic properties and the confusion cross categories are
also non-negligible factors that lead to varying performance
among classes. As could be seen in Fig.1, when trained
on balanced CIFAR-10, the difference in Anat is relatively
minor, while it reveals the disparity of difficulty and vul-
nerability among classes, leading to a significant variance
in Arob. Specifically, Class 2, 3, and 4 demonstrate signifi-



cantly lower robust accuracy compared with others.
To study this phenomenon, we train a network on the bal-

anced CIFAR-10 and visualize the latent space via t-SNE in
Fig. S1. It shows that the classes with lower Anat, such as
Class 3, obviously have less concentrated and partially over-
lapped distributions, making them easier to be attacked. It
can also be observed that Class 2, 3, and 4 have clearly more
dispersed distributions under the attack, which is consistent
with their low Arob. While under the long-tailed distribu-
tion, Class 3 benefits from the advantage of sample num-
bers over Class 4-9. Therefore, its accuracy becomes even
higher than the original uniform distribution with the help
of the induced prediction bias. A joint analysis of the effect
by both intrinsic properties and the distribution of sample
numbers among classes would be an interesting direction in
the future.

Clean image features Attacked image features

Figure S1. Latent space visualization before and after the attack.

B.4. Experiments on ImageNet-LT

We also evaluate our method on the more complicated
ImageNet-LT [12] to encourage the exploration of real-
world robustness. Due to the high resolution and large data
scale, we adopt the standard single-step adversarial training
(FGSM) and Fast adversarial training [21]. We use ResNet-
50 as the backbone with ε = 2/255 and 4/255 follow-
ing [17, 21]. The preliminary results are shown in Table S4.

Experimental results validate the effectiveness of our ap-
proach over the baseline. The relatively lower performance
on ImageNet-LT compared to CIFAR also indicates that ad-
versarial defense on the 1000-class ImageNet-LT is a more
challenging problem, which is worth further exploration by
the community.

C. Adversarial Attacks
Fast Gradient Sign Method (FGSM) [7] is a single-step
attack that generates adversarial examples through a permu-
tation along the gradient of the loss function with respect to

Table S4. Adversarial robustness results on ImageNet-LT.

Method ε CLEAN FGSM PGD-20

FAST-AT
2 / 255

11.36 8.23 7.16
FAST-Our 15.45 11.51 10.31

FGSM-AT
2 / 255

25.64 15.32 14.59
FGSM-Our 30.02 18.50 17.67

FAST-AT
4 / 255

7.20 4.52 3.76
FAST-Our 10.76 7.28 6.13

FGSM-AT
4 / 255

21.94 10.88 9.45
FGSM-Our 25.88 13.49 11.87

the clean image as:

xadv = x+ ε · sign(∇xLCE(xadvt , y)). (1)

Projected Gradient Descent (PGD) [13] starts from an ini-
tialization point that is uniformly sampled from the allowed
ε − ball centered at the clean image, and it extends FGSM
by iteratively applying multiple small steps of permutation
updating with respect to the current gradient as:

xadvt+1 = clipx,ε(x
adv
t + η · sign(∇xLCE(xadvt , y))). (2)

Momentum Iterative gradient-based Methods (MIM)
[6] integrates the momentum into BIM with a decay factor
µ,

gt+1 = µ · gt +
∇xLCE(xadvt , y)∥∥∇xLCE(xadvt , y)

∥∥
1

, (3)

and the permuted image is updated by:

xadvt+1 = clipx,ε(x
adv
t + η · sign(gt+1))). (4)

Carlini & Wagner (C&W) [2] is another powerful attack
based on optimization, where an auxiliary variable ω is in-
duced and an adversarial example constrained by l2 norm is
represented by x′ = 1

2 (tanhω+1). It can be optimized by:

argmin
ω
{c · f(x′) + ‖x′ − x‖22}, (5)

where

f(x′) = max(max
i6=y

Z(x′)− Z(x′)y,−κ), (6)

and here κ controls the confidence of the adversarial exam-
ples. It can also be extended to other lp threat model by
solving c · f(x+ δ) + ||δ||p in an iterative manner.
Auto Attack [3] is a combination of multiple attacks that
forms a parameter-free and computationally affordable en-
semble of attacks to evaluate adversarial robustness. The
standard attacks includes four selected attacks: APGDCE ,
targeted version of APGD-DLR and FAB, and Square At-
tack. Here we use the first two in our evaluation, because
since the attack is applied in a curriculum manner, we em-
pirically observe that after targeted APGD-DLR, basically



few adversarial examples are further explored by the last
two attacks. So the change in the tested results of robust
accuracy is quite small while the evaluation time can be sig-
nificantly shortened.
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