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In the main paper, we analyzed the inherent problems of
using Q-diversity metrics to select high quality ensembles.
In comparison, our FQ-diversity metrics can (1) separately
measure and compare the ensemble teams of equal size, (2)
leverage the negative samples from the focal model to mea-
sure ensemble diversity, and (3) partition the candidate en-
semble teams by using binary clustering with strategically
selected initial centroids. These optimizations enable FQ-
diversity metrics to more accurately capture the failure in-
dependence among the member models of ensemble teams,
and efficiently select high quality ensemble teams. Fur-
thermore, we further improve the quality of selected en-
semble teams by introducing EQ diversity metrics to com-
bine the top performing FQ metrics. The source codes are
provided at https://github.com/git-disl/DP-
Ensemble.

In this supplementary material, we provide additional
materials and technical details. We organize the supple-
mentary material into five sections: (1) Additional exam-
ples and visualization to illustrate the strength of FQ diver-
sity metrics over Q diversity metrics in selecting good qual-
ity ensembles. (2) Diversity analysis in terms of uncorre-
lated errors. (3) Definition of three pairwise and three non-
pairwise Q-diversity metrics, which is the basis for defining
their corresponding FQ-diversity metrics. (4) Algorithm for
Q ensemble selection, which is introduced in Section 2 of
the main paper. (5) Algorithm for FQ ensemble selection,
which supplements Section 3 of the main paper.

1. Additional Experiments for FQ metrics
1.1. Case Study on EnsSet(F5, S = 5), ImageNet

Table 1 shows the comparison of selecting high qual-
ity ensemble teams from the set of candidate ensembles
EnsSet(F5, S = 5) with team size S and focal model
F5 (ResNet152) by FQ-GD and Q-GD metrics. We list
10 example ensemble teams in EnsSet(F5, S = 5) in this
table. The green check mark indicates that the ensemble

team is selected and the red cross implies that the team is
pruned out, according to the corresponding diversity metric
and the binary partitioning threshold. In this case, FQ-GD
uses K-means to perform binary partitioning and to deter-
mine the diversity threshold. Q-GD uses the mean GD-
diversity value as the threshold for binary partitioning. It
clearly shows that our FQ-GD (measured on a set of ran-
domly selected samples from NegSampSet(F5)) can suc-
cessfully identify high accuracy ensemble teams and avoid
these ensemble teams with low accuracy. In comparison,
the Q-GD metric (measured on a set of random samples
from NegSampSet =

⋃M−1
i=0 NegSampSet(Fi) over all

M base models) fails to capture these high accuracy ensem-
ble teams. Instead, many low accuracy ensemble teams are
selected by Q-GD, such as 02578 and 02567 with the en-
semble accuracy below m max=78.25%, the max accuracy
of the member models in the above two ensemble teams,
which both have F5 as a member model. This observation
also explains the worse ensemble accuracy lower bound of
the ensemble teams selected by Q diversity metrics, com-
paring to our FQ metrics.

1.2. Case Study on EnsSet(F2, S = 5), ImageNet

For a comparison purpose, we replace the focal model
F5 (ResNet152)) with F2 (EfficentNet-B0) and obtain the
set of candidate ensemble teams, EnsSet(F2, S = 5). Ta-
ble 2 lists all of the 7 ensemble teams from Table 1, which
contain F2 as their member model, and hence are included
inEnsSet(F2, S = 5). Comparing Table 1 and Table 2, we
observe that different focal models may select different en-
semble teams, this is mainly due to two reasons: (1) when
changing the focal model from F5 to F2, some ensemble
teams will naturally be removed if they do not have F2 as a
member model, such as the ensemble team 13459. (2) FQ
diversity scores are measured based on the negative samples
from the chosen focal model. Hence, when changing the
focal model from F5 to F2, some ensemble teams that may
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Ensemble Team 12345 13459 13458 12458 23458 02357 23567 03579 02578 02567
Ensemble Accuracy 80.77 80.63 80.50 80.43 80.44 79.24 79.19 78.91 77.96 77.64

FQ-GD
(<0.882)

0.860 0.865 0.866 0.863 0.863 0.884 0.883 0.892 0.893 0.896

Q-GD
(<0.665)

0.706 0.705 0.691 0.717 0.729 0.654 0.661 0.615 0.659 0.655

Table 1: 10 Ensemble Examples on ImageNet (S=5, focal=5)

Ensemble Team 12345 12458 23458 02357 23567 02578 02567
Ensemble Accuracy 80.77 80.43 80.44 79.24 79.19 77.96 77.64

FQ-GD
(<0.858)

0.834 0.837 0.836 0.857 0.855 0.871 0.875

Q-GD
(<0.665)

0.706 0.717 0.729 0.654 0.661 0.659 0.655

Table 2: 7 Ensemble Examples on ImageNet (S=5, focal=2)

have large diversity scores (poor diversity in terms of fail-
ure independence) under focal model F5 but achieve small
diversity scores (good failure independence) under focal
model F2. For example, the two ensemble teams: 02357
and 23567 both are outperforming all member models, and
are selected by FQ-GD with the focal model F2 (Table 2).
Interestingly, both of them were not selected when the focal
model is F5 (Table 1). This further demonstrates by exam-
ple that for each ensemble team of size S, we will compute
S number of diversity scores, one for each of the S focal
models. Then we combine these S scores to obtain the en-
semble diversity for this ensemble team (recall Section 3
Step (4) in the main paper).

1.3. Case Study on Different FQ metrics, ImageNet

We observe that different FQ diversity metrics can se-
lect different ensemble teams. We list the statistics for the
ensemble teams selected by all FQ metrics (set union) and
uniquely selected by FQ-QS, FQ-KW and FQ-GD in Ta-
ble 3. Different diversity metrics measure the ensemble
diversity from different perspectives with different design
principles (see Section 3 in this supplementary material).
Therefore, different diversity metrics can capture different
ensemble teams. From Table 3, most of these ensemble
teams that are uniquely selected by different FQ metrics
show high quality and outperform all member models. By
combining all six FQ metrics, we obtain a set of 641 good
ensemble teams, among which 616 teams (96%) can outper-
form all member models and 569 teams (89%) can achieve
ensemble accuracy higher than p max=78.25%. This obser-
vation shows that combining different FQ metrics can fur-
ther improve the quality of selected ensemble teams, which
motivates our EQ metrics.

1.4. Case Study on the Thresholds, CIFAR-10

We use a binary clustering algorithm to identify the
FQ diversity thresholds for selecting high quality ensemble

Methods #Teams
# (Acc >=

m max)
# (Acc >=

78.25% p max)
All FQ metrics 641 616 569

Unique by FQ-QS 29 21 12
Unique by FQ-KW 7 7 7
Unique by FQ-GD 24 24 23

Table 3: Ensembles Selected by Different FQ metrics (ImageNet)

(a) K-means v.s. Mean (b) Agglomerative Clustering

Figure 1: Comparison of Different Thresholds (CIFAR-10,
S=4, focal=2, FQ-GD)

teams. Figure 1 shows the thresholds identified by differ-
ent methods on CIFAR-10 for the candidate ensemble set
EnsSet(F2, S = 4). First, in Figure 1a, we compare the
K-means threshold (0.761, red vertical dashed line), with
K = 2 and two initial centroids chosen as shown by the
two unfilled circles, and the mean threshold (0.769, green
vertical dashed line). It is visually clear that the K-means
threshold can prune out more low quality ensemble teams
than the mean threshold. We further use the agglomera-
tive clustering, a popular bottom-up hierarchical clustering
algorithm for binary partitioning, and for identifying the di-
versity threshold as shown in Figure 1b. The corresponding
diversity threshold is 0.790, which is much worse than the
K-mean threshold, mainly due to the lack of optimization
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Image

Ground
Truth Label

sports car minibus celluar telephone

F2F5F7

Acc=78.80%
FQ-GD=0.263

(EfficientNet-B0,
ResNet152,
SqueezeNet)

F0F1F3

Acc=78.83%
FQ-GD=0.461

(AlexNet,
DenseNet,

ResNeXt50)

Table 4: Examples on ImageNet and Top-3 Classification Confidence

on the initial centroids as we did in binary K-means. In
our first prototype, we use the K-means to perform binary
clustering and to determine the proper diversity threshold,
as described in Step (3) in Section 3 of the main paper.

1.5. Ensemble Diversity and Accuracy

Ensemble diversity metrics are by design to capture the
failure independence among member models of an ensem-
ble team. Even though we improved the correlation of en-
semble diversity and ensemble accuracy in this study, the
proposed FQ diversity metrics can still capture the failure
independence and complementary capacity among mem-
ber models which cannot be directly measured by ensem-
ble accuracy. Table 4 shows two example ensemble teams
F2F5F7 and F0F1F3 with three example images from Ima-
geNet and the top-3 classification confidence of each mem-
ber model. The two teams, F2F5F7 and F0F1F3, have
similar ensemble accuracy, that is 78.80% for F2F5F7 and
78.83% for F0F1F3, while their ensemble diversity mea-
surements are significantly different in terms of the unify-
ing FQ-GD scores, i.e., 0.263 for F2F5F7 and 0.461 for
F0F1F3. Based on the FQ-GD scores, F2F5F7 is preferred
as the member models in this team are more diverse in
terms of failure independence in comparison to the team
of F0F1F3. The visualization for these two ensemble teams
in Table 4 illustrates the impact of such FQ-GD diversity
on the ensemble prediction results by three example im-
ages. For a high diversity and hence high failure indepen-
dence team F2F5F7, when one member model in F2F5F7

makes the wrong predictions, the other two member mod-
els can help in correcting such mistakes. On the contrary,
with the low failure independence (low diversity, a high FQ-
GD value), the majority of the member models of F0F1F3

tend to make the same prediction errors, and fail to collec-
tively improve the prediction quality. This case study fur-
ther demonstrates that the design of our FQ diversity met-
rics are effective in capturing the degree of failure indepen-
dence and complementary capacity among member models
in terms of FQ-GD values.

2. Diversity by Uncorrelated Error

Neural network ensemble uses multiple (say M > 1)
neural networks to form a committee (team) to collaborate
and combine the predictions of individual member models
to make the final prediction. A consensus method will be
used to combine the individual predictions, such as major-
ity voting, plurality voting, or soft voting (model averaging,
the average of prediction vectors). [2, 8] In this study, we
use the soft voting to combine individual member model
predictions for each ensemble team, which in general per-
forms better than majority voting or plurality voting. [9]

A neural network classifier is typically trained to min-
imize a cross-entropy loss and output a probability vector
to approximate a posteriori probability densities for the cor-
responding class. For a given input x, the ith element in
the output probability vector of model Fk can be modeled
as: fki (x) = p(ci|x) + εki (x), where p(ci|x) is the posteri-
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ori probability distribution of the ith class (ci) for the input
x, and εki (x) is the error associated with this output. For
making the Bayes optimum decision, x will be predicted
as class ci if p(ci|x) > p(cj |x),∀j 6= i. Therefore, the
Bayes optimum boundary locates at all points x∗ such that
p(ci|x∗) = p(cj |x∗) where p(cj |x∗) = maxl 6=ip(cl|x).
Given the neural network model will output fki (x) instead
of p(ci|x), the decision boundary of the model, x̄, may vary
from the optimum boundary by an offset o = x̄ − x∗. [7]
shows that the added error beyond Bayes error is Eadd =
dσ2
o

2 where d is the difference between the derivatives of the
two posteriors and σ2

o is the variance of the boundary off-

set o, σ2
o =

2σ2

εk
i

d2 . Combining the predictions of S models
with model averaging (avg), the ith element in the com-
bined probability vector gives an approximation to p(ci|x)

as favgi (x) = 1
S

∑S
k=1 f

k
i (x) = p(ci|x) + εi(x), where

εi(x) = 1
S ε
k
i (x). We can calculate the variance of εi with

Formula (1) as follows:

σ2
εi =

1

S2

S∑
k=1

S∑
l=1

cov(εki (x), εli(x))

=
1

S2

S∑
k=1

σ2
εki

+
1

S2

S∑
k=1

∑
l 6=k

cov(εki (x), εli(x))

(1)

where cov() represents the covariance. With cov(a, b) =
corr(a, b)σaσb, we can replace the covariance with corre-
lation corr() and derive

σ2
εi =

1

S2

S∑
k=1

σ2
εki

+
1

S2

S∑
k=1

∑
l 6=k

corr(εki (x), εli(x))σεki σεli

Let δi denote the average correlation factor among these
models, we have

δi =
1

S(S − 1)

S∑
k=1

∑
l 6=k

corr(εki (x), εli(x))

Assuming the common variance σ2
εi = σ2

εki
holds for every

model Fk, with δi we have

σ2
εi =

1

S
σ2
εi +

S − 1

S
δiσ

2
εi

With the variance of the ensemble decision boundary off-

set σ2
oavg =

σ2
εi
+σ2

εj

d2 given in [7], we have

σ2
oavg =

1

d2S
(σ2
εi + (S − 1)δiσ

2
εi + σ2

εj + (S − 1)δjσ
2
εj )

Assume that the error between classes are i.i.d., that is
σ2
εi = σ2

εj . With σ2
εi = σ2

εki
(the previous assumption) and

σ2
o =

2σ2

εk
i

d2 given in [7], we have the following Formula (2).

σ2
oavg =

1

d2S
(2σ2

εi + (S − 1)σ2
εi(δi + δj))

=
2σ2

εi

d2S
(1 + (S − 1)

(δi + δj)

2
)

=
2σ2

εki

d2S
(1 + (S − 1)

(δi + δj)

2
)

=
σ2
o

S
(1 + (S − 1)

δi + δj
2

)

(2)

To extend the above formula to include all classes, given
δ =

∑C
i=1 Piδi, where Pi is the prior probability of class

ci and C is the total number of classes. Assuming the prior
probability Pi of class ci is uniformly distributed, we have

σ2
oavg =

σ2
o

S
(1 + (S − 1)δ) = σ2

o(
1 + (S − 1)δ)

S
)

So we can derive the added error for the ensemble pre-
diction Eavgadd as Formula (3) shows:

Eavgadd =
dσ2

oavg

2

=
dσ2

o

2
(
1 + (S − 1)δ)

S
)

= Eadd(
1 + (S − 1)δ)

S
)

(3)

Hence, the ideal scenario corresponds to S diverse mem-
ber models of an ensemble team with size S, where they can
output predictions with uncorrelated errors (failure indepen-
dence), i.e., δ ≤ 0. In this case, the overall prediction error
can be dramatically reduced by at least S× with a simple
model averaging method. In the meantime, the worst sce-
nario corresponds to highly correlated errors of individual
member models with δ = 1, such as S perfect model dupli-
cates, the error of this ensemble will remain the same as the
initial error. In general, the correlation δ lies between 0 and
1, and therefore, it is always beneficial to use ensemble to
reduce the prediction errors.

3. Ensemble Diversity Metrics
In this study, we have covered six representative diver-

sity metrics. In the literature, different studies will use one
of these diversity metrics to select models and analyze the
prediction results. However, there are few studies to provide
guidelines for choosing them or to compare and evaluate
these diversity metrics in terms of ensemble selection qual-
ity with respect to boosting ensemble accuracy. Our paper
is one of the first attempts to investigate the impact of en-
semble diversity metrics on boosting the overall ensemble
accuracy.
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In general, diversity metrics can be classified into two
major categories based on how the fault independence and
uncorrelated errors are computed using a set of negative
samples. They are pairwise metrics and non-pairwise met-
rics. We below describe six representative diversity met-
rics considered in our study: Cohen’s Kappa, Q Statis-
tics and Binary Disagreement for pairwise, and Fleiss’
Kappa, Kohavi-Wolpert Variance and Generalized Diversity
for non-pairwise.

Consider a base model pool of M base models, all
trained on the same dataset for the same learning task. Let
X = {x0, x1, ..., xN−1} be the set of randomly selected
N labeled negative samples from the training dataset. For
a base model Fi and a negative sample set X, Fi will
output a vector of binary values on X, denoted as ωi =
[ωi,0, ωi,1, ..., ωi,N−1]T , and ωi,k = 1 if Fi predicts xk cor-
rectly, otherwise, ωi,k = 0.

Pairwise Diversity Metrics Pairwise diversity metrics
are calculated based on a pair of classifiers. Table 5 lists
four different types of prediction results between a pair of
classifiers Fi and Fj , such as both Fi and Fj make correct
or wrong predictions and either Fi or Fj makes correct pre-
dictions. Hence, we can count the number of samples in
the four different types, that is Nab, which represents the
total number of samples xk ∈ X, such that ωi,k = a and
ωj,k = b.

Fj correct (1) Fj wrong (0)
Fi correct (1) N11 N10

Fi wrong (0) N01 N00

N = N00 +N01 +N10 +N11

Table 5: The relationship between a pair of classifiers

i. Cohen’s Kappa (CK): Cohen’s Kappa measures the
diversity between a pair of classifiers Fi and Fj from the
perspective of agreement [4, 3]. A lower Cohen’s kappa
value indicates lower agreement and higher diversity. Its
definition (κij) between a pair of classifiers Fi and Fj is
shown in Formula (4). The value of Cohen’s kappa ranges
from -1 to 1, where 0 represents the amount of agreement
by random chance. [4]

κij =
2(N11N00 −N01N10)

(N11 +N10)(N01 +N00) + (N11 +N01)(N10 +N00)
(4)

ii. Q Statistics (QS): The Q statistics [10] is defined
as QSij in Formula (5) for a pair of models Fi and Fj .
The value QSij varies between -1 and 1. When the models
Fi and Fj are statistically independent, the expected QSij
value is 0. If both models tend to recognize the same input
sample similarly, QSij will have a positive value. For two

diverse models, recognizing the same input sample differ-
ently, it will render a small or negative QSij value.

QSij =
N11N00 −N01N10

N11N00 +N01N10
(5)

iii. Binary Disagreement (BD): The binary disagree-
ment [6, 3] is defined as the ratio of (i) the number of sam-
ples on which one model is correct while the other model is
wrong to (ii) the total number of samples predicted by the
two models Fi, Fj in Formula (6).

BDij =
N01 +N10

N11 +N10 +N01 +N00
(6)

For an ensemble team of S member models, we calculate
its diversity value as the averaged metric value over all pairs
of classifiers in Formula (7), whereQ represents a pair-wise
diversity metric as recommended by [3].

Q =
2

S(S − 1)

S−1∑
i=1

S∑
j=i+1

Qij (7)

Non-pairwise Diversity Metrics Non-pairwise diversity
metrics are widely used for a team of 2 or more models. We
focus on three representative non-pairwise diversity metrics
to compare with pairwise diversity metrics. For an ensem-
ble team of S classifiers, l(xk) denotes the number of clas-
sifiers that correctly recognize xk, i.e., l(xk) =

∑S
i=1 ωik.

iv. Fleiss’ Kappa (FK): Similar to Cohen’s Kappa,
Fleiss’ Kappa [1] also measures the diversity from the per-
spective of agreement. The difference is that it can be di-
rectly calculated for a team of 2 or more models as For-
mula (8) shows, where p̄ is the average classification accu-
racy for the ensemble team and κ is not simply obtained by
averaging the Cohen’s kappa (κij).

p̄ =
1

NS

N∑
k=1

S∑
i=1

ωi,k

κ = 1−
1
S

∑N
k=1 l(xk)(S − l(xk)

N(S − 1)p̄(1− p̄)

(8)

v. Kohavi-Wolpert Variance (KW): Kohavi-Wolpert
Variance [3] measures the variability of the predicted
class labels for the sample xk within the team of models
F1, F2, ..., FS as Formula (9) shows. A higher value of KW
variance implies higher ensemble diversity of the team.

KW =
1

NS2

N∑
k=1

l(xk)(S − l(xk)) (9)

vi. Generalized Diversity (GD): The generalized diver-
sity was proposed by [5] as Formula (10) shows. Y is a ran-
dom variable, representing the proportion of classifiers (out
of S) that fail to recognize a random sample xk. pi denotes
the probability of Y = i

S , that is the probability of i (out
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of S) classifiers recognizing a randomly chosen sample xk
incorrectly. p(1) represents the expected probability of one
randomly picked model failing while p(2) is the expected
probability of both two randomly picked models failing.
GD varies between 0 and 1. The maximum diversity, 1, can
be reached when the failure of one model is accompanied by
the correct recognition by the other model for two randomly
picked models, which corresponds to p(2) = 0. When both
two randomly picked models fail, we have p(1) = p(2),
corresponding to the minimum diversity, 0.

p(1) =

S∑
i=1

i

S
pi

p(2) =

S∑
i=1

i(i− 1)

S(S − 1)
pi

GD = 1− p(2)

p(1)

(10)

Table 6 lists the six Q-diversity metrics with three pair-
wise and three non-pairwise representatives. The arrow col-
umn (↑ | ↓) specifies the relationship between the Q-value
and the ensemble diversity. The ↓ indicates that the low
Q-value refers to high ensemble diversity and ↑ indicates
that the high Q-value refers to high ensemble diversity. To
present a consistent view of all six Q-diversity metrics such
that the low Q-value corresponds to high ensemble diver-
sity, we apply (1−Q-value) when calculating the diversity
scores using BD, KW and GD.

Type Name Notation ↑ | ↓

Pairwise
Cohen’s Kappa CK ↓

Q Statistics QS ↓
Binary Disagreement BD ↑

Non-pawise
Fleiss’ Kappa FK ↓

Kohavi-Wolpert variance KW ↑
Generalized Diversity GD ↑

Table 6: A summary of 6 Q-diversity metrics

4. Algorithm for Q Ensemble Selection
In Section 2 of the main paper, we have provided the

analysis of the potential problems for the Q-diversity en-
semble selection, which motivated the development of FQ-
diversity ensemble selection. In this supplementary mate-
rial, we include the pseudo code of Algorithm 1 for Q-
diversity in this section and Algorithm 2 for FQ-diversity
in the next section.

Algorithm 1 provides a sketch of the pseudo code, de-
scribing the Q-diversity ensemble team selection process.
We denote a diversity threshold calculation function by
fthreshold, such as the mean function. For Q-diversity en-
semble selection, we compute the mean value of all di-
versity values computed for all candidate ensemble teams

Algorithm 1 Q Ensemble Team Selection
1: procedure QENSTEAMS(NegSampSet,Q, fthreshold)
2: Input: NegSampSet: negative samples; Q the diversity metric;
fthreshold: the diversity threshold calculation function.

3: Output: GEnsSet: the set of good ensemble teams.
4: Obtain EnsSet . all possible ensemble teams in EnsSet
5: Initialize GEnsSet = {}, D = {}
6: for i = 1 to |EnsSet| do
7: . calculate the diversity metric Q for Ti ∈ EnsSet
8: qi = DiversityMetric(Q,Ti, NegSampSet)
9: D.append(qi) . Store qi in the diversity measures D

10: end for
11: θ(Q) = fthreshold(D) . Calculate the diversity threshold
12: for i = 1 to |EnsSet| do
13: if qi < θ(Q) then
14: GEnsSet.add(Ti) . add qualified Ti into GEnsSet
15: end if
16: end for
17: return GEnsSet
18: end procedure

in EnsSet as the Q-diversity threshold. Based on the
diversity threshold θ(Q) (Line 11), we will select teams
with the diversity measure q < θ(Q) and place them into
the set of good ensemble teams GEnsSet (Line 12∼16).
With Q-diversity metrics, we have high probability to boost
the overall ensemble accuracy of the selected teams in
GEnsSet.

5. Algorithm for FQ Ensemble Selection

Algorithm 2 gives a sketch of the process of using FQ-
diversity to select good ensemble teams from a single par-
tition of the ensemble teams with a fixed size and focal
model, i.e., EnsSet(Ffocal, S).

First, consider all the possible ensemble teams of size S
including the focal model Ffocal, i.e., EnsSet(Ffocal, S).
We can calculate the size of EnsSet(Ffocal, S) via count-
ing all the combinations of (S − 1) models from the re-
maining (F − 1) base models in the base model pool,
that is |EnsSet(Ffocal, S)| =

(
M−1
S−1

)
= (M−1)!

(S−1)!(M−S)! .
For example, when M = 10, and S = 5, we have
|EnsSet(Ffocal, S)| = 126.

Second, with a certain number, such as 100, of negative
samples randomly selected from the focal model, Ffocal,
denoted as NegSampSet(Ffocal), we calculate the set
of diversity score and ensemble accuracy pairs, (qi, acci),
DA(Q) = {(qi, acci)|Ti ∈ EnsSet(Ffocal, S)}, each cor-
responding to the FQ-diversity measure of the team Ti and
its ensemble accuracy as Line 5∼10 in Algorithm 2 shows.

Third, for the given diversity metricQ, we propose to use
the K-means clustering algorithm with K = 2 and two ini-
tial centroids, initCentroid1, initCentroid2, to identify
the good diversity threshold from DA(Q). initCentroid1
is defined as the highest diversity centroid, denoted as
(q1min, acc

1
max) such that for any (qi, acci) ∈ DA(Q),
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Algorithm 2 FQ Ensemble Team Selection
1: procedure FQENSTEAMS(Ffocal, NegSampSet(Ffocal), S,Q)
2: Input: Ffocal the focal model; NegSampSet(Ffocal): nega-

tive samples from Ffocal; S the team size; Q the diversity metric.
3: Output: GEnsSet(Ffocal, S,Q): the set of selected diverse en-

semble teams with team size S and focal model Ffocal.
4: Obtain EnsSet(Ffocal, S)
5: Initialize DA(Q) = {}
6: for i = 1 to |EnsSet(Ffocal, S)| do
7: qi = DiversityMetric(Q,Ti, NegSampSet(Ffocal))
8: acci = Accuracy(Ti)
9: DA(Q).append((qi, acci))

10: end for
11: Initialize GEnsSet(Ffocal, S,Q) = {}
12: . obtain the initial centroids for clustering
13: initCentroid1 = (q1min, acc

1
max)

14: initCentroid2 = (q2max, acc
2
min)

15: . obtain the 2 clusters via running K-Means on DA(Q).
16: Cluster1, (q1, acc1), Cluster2, (q2, acc2) =

KMeans(2, DA, initCentroid1, initCentroid2)
17: . get the threshold s.t. acc1 ≥ acc2
18: θFQ(Ffocal, S,Q) =

min(mindiv(Cluster2), meandiv(DA(Q)))
19: . add qualified Ti into GEnsSet(Ffocal, S,Q)
20: for i = 1 to |EnsSet(Ffocal, S)| do
21: if qi < θFQ(Ffocal, S,Q) then
22: GEnsSet(Ffocal, S,Q).add(Ti)
23: end if
24: end for
25: return GEnsSet(Ffocal, S,Q)
26: end procedure

we have q1min ≤ qi and acc1max ≥ acci and ∃j, k ∈
{1, 2, ..., |EnsSet(Ffocal, S)|}, q1min = qj , acc

1
max =

acck. Similarly, we define initCentroid2 as the lowest
diversity centroid, denoted as (q2max, acc

2
min) such that for

any (qi, acci) ∈ DA(Q), we have q2max ≥ qi and acc2min ≤
acci and ∃j, k ∈ {1, 2, ..., |EnsSet(Ffocal, S)|}, q2max =
qj , acc

2
min = acck. The K-means clustering will par-

tition DA(Q) into two clusters, Cluster1 with the cen-
troid (q1, acc1) and Cluster2 with the centroid (q2, acc2)
such that the accuracy on the centroid of Cluster1 is
higher than Cluster2, that is acc1 ≥ acc2. Lever-
aging these two clusters, we will focus on those pairs
(qi, acci) in Cluster1 that have high acci and low qi
(high FQ-diversity). Let mindiv(Cluster2) be the low-
est FQ-value in Cluster2 and meandiv(DA(Q)) be the
mean value of all FQ-diversity values in DA(Q). We
compute the FQ-diversity threshold θFQ(Ffocal, S,Q) as
follows: θFQ(Ffocal, S,Q) = min(mindiv(Cluster2),
meandiv(DA(Q))). The team Ti ∈ EnsSet(Ffocal, S)
will be selected into GEnsSet(Ffocal, S,Q) if qi <
θFQ(Ffocal, S,Q) (Line 18∼24).

Given a diversity metric Q, a set of candidate en-
semble teams of a fixed team size S, and a focal
model Ffocal, we select the set of ensemble teams
GEnsSet(Ffocal, S,Q) with FQ-diversity. For an en-
semble team in GEnsSet(Ffocal, S,Q), it has S differ-

ent FQ-diversity scores, one for each of its S focal mod-
els as Figure 2 shows. For example, the team 012 is
included in EnsSet(F0, S = 3), EnsSet(F1, S = 3),
and EnsSet(F2, S = 3), then it has three FQ-CK scores
(S = 3) for focal = 0, 1, 2 respectively. These S FQ
scores will be combined to produce a final unifying FQ di-
versity score for each ensemble team.

Figure 2: Unifying FQ scores
We follow the steps below to obtain the final unifying

FQ-score for each ensemble team: (1) We first scale the
FQ-scores obtained in Algorithm 2 for all teams in one par-
tition, i.e., EnsSet(Ffocal, S), into [0, 1]. That is to scale
D = {qi|(qi, acci) ∈ DA(Q)} into [0, 1]. The set of scaled
FQ-scores is D = {qi|qi = qi−min(D)

max(D)−min(D) , qi ∈ D}
corresponding to the original set of FQ-scores, D, where
min(D) and max(D) represent the minimum and maxi-
mum FQ-scores in D, and we have qi ∈ [0, 1]. (2) Then
for an ensemble team T of size S, we can obtain S scaled
FQ-scores, corresponding to the S focal models. Following
the previous example, the team 012 also has three scaled
FQ-scores, denoted as qa0 , qa1 , qa2 for focal = 0, 1, 2
respectively, where ai is the index of the team 012 in
EnsSet(Fi, S = 3). (3) Next, we perform a weighted
average of the S scaled FQ-scores to obtain the final uni-
fying FQ-score. The weights are calculated using the rank
of focal model accuracy. For example, for the team 012
on the CIFAR-10 dataset, the first focal model F0 has the
highest model accuracy and rank 3 within the team in as-
cending order as Table 1 in the main paper shows. Its cor-
responding weight is 3 − 1 = 2. The reason to deduct 1
from all the ranks for calculating the weights is to avoid
the worst FQ-score when the lowest accuracy model serves
as the focal model, i.e., the weight for the focal model F1

with the lowest model accuracy and rank 1 is 1 − 1 = 0.
Therefore, the final unifying FQ-score for the team 012 is
2×qa0+0×qa1+1×qa2

2+0+1 . The final unifying FQ-scores enable a
fair diversity comparison among ensemble teams of differ-
ent team sizes and focal models.

To combine the ensemble teams selected for a fixed size
team of S and focal model Ffocal. We follow a two-level
aggregation. First, we combine the ensemble teams of the
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same size S. Here, a set of (qi, acci) pairs of the final
unifying FQ-scores (q) and accuracy (acc) for all teams
in
⋃M−1
focal=0GEnsSet(Ffocal, S,Q) with the same team

size S will be formed. We then follow the same steps as
Line 11∼24 in Algorithm 2 with the threshold more loosely
set as θFQ(S,Q) = q2 (corresponding to the centroid of
Cluster2) in Line 18 to further prune out bad ensemble
teams. Hence, we can obtain a better set of ensemble teams
of team size S, denoted as GEnsSet(S,Q). For all teams
with different team sizes S, we simply perform a union op-
eration across GEnsSet(S,Q) to obtain all the good en-
semble teams, that is

⋃M−1
S=2 GEnsSet(S,Q). The team

with all base models (S = M ) is a special case, which will
be considered separately. Through the above steps, we can
obtain a set of all good ensemble teams selected by an FQ-
diversity metric as well as the final unifying FQ diversity
scores for each ensemble team.
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