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1. Training Details
All hyper-parameter settings are specified in Table 1 and

the network architectures in Tables 2 to 5. Abbreviations of
the components are defined as follows:

• Conv(cin, cout, k, s, p): 2D convolution with cin input
channels, cout output channels, kernel size k, stride s
and padding p.

• Deconv(cin, cout, k, s, p): 2D deconvolution with cin
input channels, cout output channels, kernel size k,
stride s and padding p.

• Upsample(s): 2D nearest-neighbor upsampling with a
scale factor s.

• Linear(cin, cout): linear layer with cin input channels
and cout output channels.

• GN(n): group normalization [8].

• IN: instance normalization [6] with n groups.

• LReLU(p): leaky ReLU [5] with a slope p.

• Conv1D and Upsample1D are similarly defined.

2. Synthetic Vases
We generate a synthetic vase dataset in order to conduct

quantitative assessment of our de-rendering results. Exam-
ples of the synthetic vases are shown in Fig. 2. The detailed
procedure to generate this dataset is described in the follow-
ing.

SoR shapes. We simulate vase-like SoR curves r 2 RL

using a combination of two sine curves, where L is set to be
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32, and each entry ri is given by:

ri = t+ f1(i) + f2(i)

f1(i) = a1 · (1 + sin(
L� i

L
· p1 +

i

L
· q1))

f2(i) = a2 · (1 + sin(p2 +
i

L
· q2)),

(1)

where the random variables are t ⇠ U(0.1, 0.3), a1 ⇠
U(0, 0.3), p1 ⇠ U(�⇡, 0), q1 ⇠ U(⇡2 , 2⇡), a2 ⇠ U(0, 0.1),
p2 ⇠ U(0, 2⇡) and q2 ⇠ U(⇡2 , 2⇡).

We then render the vases with random elevation angles
between 0� and 20�, using a projective camera with a field
of view of 10�.

Material. We generate random diffuse albedo maps using
texture images from a public material dataset (CC0 Tex-
tures [1]), with random augmentations in brightness, con-
trast and hue. Shininess constant ↵ is randomly sampled
between 1 and 196 and specular albedo constant ⇢ is sam-
pled between 0.1 and 1.

Lighting. We synthesize environment illumination using
3 random spherical Gaussian lobes [7, 4]:

L(⌘) =
3X

k=1

p
�kFkG(⌘; ⇠k,�k), G(⌘; ⇠,�) = e��(1�⌘·⇠),

(2)
where ⇠k controls the direction of each lobe and is a unit
vector randomly sampled from the upper-front quarter of
the sphere, �k ⇠ U(10, 30) controls the bandwidth, and
Fk ⇠ U(0.1, 0.3) controls the intensity.

3. Additional Results
Fig. 1 shows a visual comparison of the results obtained

from the ablation experiments as well as a supervised base-
line, corresponding to the numerical results reported in Table
2 of the paper.
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Parameter Value/Range

Optimizer Adam
Learning rate 2⇥ 10�4

Number of iterations 40k
Batch size 24
Loss weight �s 10
Loss weight �dt 100
Loss weight �im 1
Loss weight �alb 1
Loss weight �SAD 0.01
Loss weight �diff 1

Input image size 256⇥ 256
Whole unwrapped image size 256⇥ 768
Frontal unwrapped image size 256⇥ 256
Vertex grid size 32⇥ 96
Environment map size 16⇥ 48
Field of view (FOV) 10�

Radius r̂ (0.05, 0.9)
Radius column height ĥ (0.5, 0.95)
Pitch angles (0�, 20�)
Roll angles (�10�, 10�)
Translation in X , Y axes (�0.2, 0.2)
Albedo Â (0, 1)
Shininess ↵̂ (1, 196)
Specular albedo ⇢̂ (0, 2)
Environment map Ê (0, 1)

Table 1: Training details and hyper-parameter settings.

Encoder Output size

Conv(3, 64, 4, 2, 1) + ReLU 128 ⇥ 128
Conv(64, 128, 4, 2, 1) + ReLU 64 ⇥ 64
Conv(128, 256, 4, 2, 1) + ReLU 32 ⇥ 32
Conv(256, 512, 4, 2, 1) + ReLU 16 ⇥ 16
Conv(512, 512, 4, 2, 1) + ReLU 8 ⇥ 8
Conv(512, 512, 4, 2, 1) + ReLU 4 ⇥ 4
Conv(512, 128, 4, 1, 0) + ReLU 1 ⇥ 1

Decoder Output size

Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 2
Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 4
Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 8
Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 16
Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) 32�

Sigmoid ! output r̂ 32
Linear(128, 128) + ReLU 1
Linear(128, 5) 1
Sigmoid ! output ĥ, v̂ 1

Table 2: Architecture of the shape network fS . The network outputs
radius column r̂, height ĥ and camera pose v̂ from two branches.

Additional decomposition and relighting results of real
vases are shown in Fig. 3 (from Metropolitan Museum col-
lection [2]) and in Fig. 4 (from Open Images [3]). See the
video for more visual results, including animations of rotat-
ing vases as well as relighting effects.

Encoder Output size

Conv(3, 64, 4, 2, 1) + GN(16) + LReLU(0.2) 128 ⇥ 128
Conv(64, 128, 4, 2, 1) + GN(32) + LReLU(0.2) 64 ⇥ 64
Conv(128, 256, 4, 2, 1) + GN(64) + LReLU(0.2) 32 ⇥ 32
Conv(256, 512, 4, 2, 1) + GN(128) + LReLU(0.2) 16 ⇥ 16
Conv(512, 512, 4, 2, 1) + GN(128) + LReLU(0.2) 8 ⇥ 8
Conv(512, 512, 4, 2, 1) + LReLU(0.2) 4 ⇥ 4
Conv(512, 128, 4, 1, 0) + ReLU 1 ⇥ 1

Decoder Output size

Deconv(128, 512, (2,6), 1, 0) + ReLU 2 ⇥ 6
Upsample(2) + Conv(512, 256, 3, 1, 1) + GN(64) + ReLU 4 ⇥ 12
Upsample(2) + Conv(256, 128, 3, 1, 1) + GN(32) + ReLU 8 ⇥ 24
Upsample(2) + Conv(128, 64, 3, 1, 1) + GN(16) 16 ⇥ 48�

Sigmoid ! output Ê 16 ⇥ 48
Linear(128, 128) + ReLU 1
Linear(128, 2) 1
Sigmoid ! output ↵̂, ⇢̂ 1

Table 3: Architecture of the light network fL. The network outputs
environment map Ê and specular albedo ⇢̂ from two branches.

Encoder Output size

Conv(3, 64, 4, 2, 1) + IN + LReLU(0.2) 128 ⇥ 128
Conv(64, 128, 4, 2, 1) + IN + LReLU(0.2) 64 ⇥ 64
Conv(128, 256, 4, 2, 1) + IN + LReLU(0.2) 32 ⇥ 32
Conv(256, 512, 4, 2, 1) + IN + LReLU(0.2) 16 ⇥ 16
Conv(512, 512, 4, 2, 1) + IN + LReLU(0.2) 8 ⇥ 8
Conv(512, 512, 4, 2, 1) + IN + LReLU(0.2) 4 ⇥ 4

Decoder Output size

Upsample(2) + Conv(512, 512, 3, 1, 1) + IN + SC + ReLU 8 ⇥ 8
Upsample(2) + Conv(512, 256, 3, 1, 1) + IN + SC + ReLU 16 ⇥ 16
Upsample(2) + Conv(512, 256, 3, 1, 1) + IN + SC + ReLU 32 ⇥ 32
Upsample(2) + Conv(256, 128, 3, 1, 1) + IN + SC + ReLU 64 ⇥ 64
Upsample(2) + Conv(128, 64, 3, 1, 1) + IN + SC + ReLU 128 ⇥ 128
Upsample(2) + Conv(64, 3, 3, 1, 1) 256 ⇥ 256
Tanh ! output Â 256 ⇥ 256

Table 4: Architecture of the albedo network fA. The network fol-
lows a U-Net structure with skip-connections and replaces deconvo-
lution with nearest neighbor upsampling followed by convolution.

Encoder Output size

Conv(3, 64, 4, 2, 1) + IN + LReLU(0.2) 32 ⇥ 32
Conv(64, 128, 4, 2, 1) + IN + LReLU(0.2) 16 ⇥ 16
Conv(128, 256, 4, 2, 1) + IN + LReLU(0.2) 8 ⇥ 8
Conv(256, 512, 4, 2, 1) + LReLU(0.2) 4 ⇥ 4
Conv(512, 1, 4, 1, 0) ! output scalar 1 ⇥ 1

Table 5: Architecture of the discriminator network D. The network
outputs a single scalar for each input patch.
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Figure 1: Qualitative comparison of the ablation experiments and the supervised baseline.

Figure 2: Examples of the synthetic vases.
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Figure 3: Additional results on Metropolitan Museum collection [2].
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Figure 4: Additional results on Open Images vases [3].
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