Supplementary Material: De-rendering the World's Revolutionary Artefacts

Shangzhe Wu^{1,4*} Ameesh Makadia⁴ Jiajun Wu² Noah Snavely⁴ Richard Tucker⁴ Angjoo Kanazawa^{3,4}

¹University of Oxford ²Stanford University ³University of California, Berkeley ⁴Google Research

1. Training Details

All hyper-parameter settings are specified in Table 1 and the network architectures in Tables 2 to 5. Abbreviations of the components are defined as follows:

- Conv(c_{in}, c_{out}, k, s, p): 2D convolution with c_{in} input channels, c_{out} output channels, kernel size k, stride s and padding p.
- Deconv(c_{in}, c_{out}, k, s, p): 2D deconvolution with c_{in} input channels, c_{out} output channels, kernel size k, stride s and padding p.
- Upsample(s): 2D nearest-neighbor upsampling with a scale factor s.
- Linear(c_{in}, c_{out}): linear layer with c_{in} input channels and c_{out} output channels.
- GN(*n*): group normalization [8].
- IN: instance normalization [6] with n groups.
- LReLU(*p*): leaky ReLU [5] with a slope *p*.
- Conv1D and Upsample1D are similarly defined.

2. Synthetic Vases

We generate a synthetic vase dataset in order to conduct quantitative assessment of our de-rendering results. Examples of the synthetic vases are shown in Fig. 2. The detailed procedure to generate this dataset is described in the following.

SoR shapes. We simulate vase-like SoR curves $\mathbf{r} \in \mathbb{R}^L$ using a combination of two sine curves, where L is set to be 32, and each entry r_i is given by:

$$r_{i} = t + f_{1}(i) + f_{2}(i)$$

$$f_{1}(i) = a_{1} \cdot (1 + \sin(\frac{L-i}{L} \cdot p_{1} + \frac{i}{L} \cdot q_{1})) \qquad (1)$$

$$f_{2}(i) = a_{2} \cdot (1 + \sin(p_{2} + \frac{i}{L} \cdot q_{2})),$$

where the random variables are $t \sim \mathcal{U}(0.1, 0.3), a_1 \sim \mathcal{U}(0, 0.3), p_1 \sim \mathcal{U}(-\pi, 0), q_1 \sim \mathcal{U}(\frac{\pi}{2}, 2\pi), a_2 \sim \mathcal{U}(0, 0.1), p_2 \sim \mathcal{U}(0, 2\pi) \text{ and } q_2 \sim \mathcal{U}(\frac{\pi}{2}, 2\pi).$

We then render the vases with random elevation angles between 0° and 20° , using a projective camera with a field of view of 10° .

Material. We generate random diffuse albedo maps using texture images from a public material dataset (CC0 Textures [1]), with random augmentations in brightness, contrast and hue. Shininess constant α is randomly sampled between 1 and 196 and specular albedo constant ρ is sampled between 0.1 and 1.

Lighting. We synthesize environment illumination using 3 random spherical Gaussian lobes [7, 4]:

$$L(\eta) = \sum_{k=1}^{3} \sqrt{\lambda_k} F_k G(\eta; \xi_k, \lambda_k), \ G(\eta; \xi, \lambda) = e^{-\lambda(1-\eta\cdot\xi)},$$
(2)

where ξ_k controls the direction of each lobe and is a unit vector randomly sampled from the upper-front quarter of the sphere, $\lambda_k \sim \mathcal{U}(10, 30)$ controls the bandwidth, and $F_k \sim \mathcal{U}(0.1, 0.3)$ controls the intensity.

3. Additional Results

Fig. 1 shows a visual comparison of the results obtained from the ablation experiments as well as a supervised baseline, corresponding to the numerical results reported in Table 2 of the paper.

^{*}The work was primarily done during an internship at Google Research.

Parameter	Value/Range
Optimizer	Adam
Learning rate	2×10^{-4}
Number of iterations	40k
Batch size	24
Loss weight λ_s	10
Loss weight λ_{dt}	100
Loss weight λ_{im}	1
Loss weight λ_{alb}	1
Loss weight λ_{SAD}	0.01
Loss weight λ_{diff}	1
Input image size	256×256
Whole unwrapped image size	256×768
Frontal unwrapped image size	256×256
Vertex grid size	32×96
Environment map size	16×48
Field of view (FOV)	10°
Radius r	(0.05, 0.9)
Radius column height \hat{h}	(0.5, 0.95)
Pitch angles	$(0^{\circ}, 20^{\circ})$
Roll angles	$(-10^{\circ}, 10^{\circ})$
Translation in X, Y axes	(-0.2, 0.2)
Albedo \hat{A}	(0, 1)
Shininess $\hat{\alpha}$	(1, 196)
Specular albedo $\hat{\rho}$	(0,2)
Environment map \hat{E}	(0,1)

Table 1: Training details and hyper-parameter settings.

Encoder Output size Conv(3, 64, 4, 2, 1) + ReLU 128 × 128 Conv(64, 128, 4, 2, 1) + ReLU 64 × 64 Conv(128, 256, 4, 2, 1) + ReLU 32 × 32 Conv(512, 512, 4, 2, 1) + ReLU 16 × 16 Conv(512, 512, 4, 2, 1) + ReLU 8 × 8 Conv(512, 512, 4, 2, 1) + ReLU 4 × 4 Conv(512, 512, 4, 2, 1) + ReLU 1 × 1 Decoder Output size Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 2 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 4 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 4 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 16 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 16 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 16 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 16 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 16 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) 32 \Lapsimolic Joint \Lapsimolic \La		0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Encoder	Output size
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Conv(3, 64, 4, 2, 1) + ReLU	128×128
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Conv(64, 128, 4, 2, 1) + ReLU	64×64
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Conv(128, 256, 4, 2, 1) + ReLU	32×32
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Conv(256, 512, 4, 2, 1) + ReLU	16×16
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Conv(512, 512, 4, 2, 1) + ReLU	8 imes 8
$\begin{array}{c c} \mbox{Conv}(512, 128, 4, 1, 0) + \mbox{ReLU} & 1 \times 1 \\ \hline \mbox{Decoder} & \mbox{Output size} \\ \hline \mbox{Upsample1D}(2) + \mbox{Conv1D}(128, 128, 3, 1, 1) + \mbox{ReLU} & 2 \\ \mbox{Upsample1D}(2) + \mbox{Conv1D}(128, 128, 3, 1, 1) + \mbox{ReLU} & 4 \\ \mbox{Upsample1D}(2) + \mbox{Conv1D}(128, 128, 3, 1, 1) + \mbox{ReLU} & 8 \\ \mbox{Upsample1D}(2) + \mbox{Conv1D}(128, 128, 3, 1, 1) + \mbox{ReLU} & 16 \\ \mbox{Upsample1D}(2) + \mbox{Conv1D}(128, 128, 3, 1, 1) + \mbox{ReLU} & 16 \\ \mbox{Upsample1D}(2) + \mbox{Conv1D}(128, 128, 3, 1, 1) + \mbox{ReLU} & 16 \\ \mbox{Upsample1D}(2) + \mbox{Conv1D}(128, 128, 3, 1, 1) & 32 \\ \mbox{\downarrow sigmoid \rightarrow output \hat{r}} & 32 \\ \mbox{Linear}(128, 128) + \mbox{ReLU} & 1 \\ \mbox{Linear}(128, 5) & 1 \\ \mbox{Sigmoid \rightarrow output \hat{h}, \hat{v}} & 1 \\ \hline \end{array}$	Conv(512, 512, 4, 2, 1) + ReLU	4×4
$\begin{array}{c c} \hline \text{Decoder} & & & & & & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU} & & & & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU} & & & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU} & & & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU} & & & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU} & & & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU} & & & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU} & & & \\ \hline Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + & \\ \hline \text{Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + & \\ \hline \text{Upsample1D(2) + $	Conv(512, 128, 4, 1, 0) + ReLU	1×1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Decoder	Output size
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU	2
Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU 16 Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) 32 \downarrow Sigmoid \rightarrow output $\hat{\mathbf{r}}$ 32 Linear(128, 128) + ReLU 1 Linear(128, 5) 1 Sigmoid \rightarrow output \hat{h}, \hat{v} 1	Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU	2 4
Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) 32 \downarrow Sigmoid \rightarrow output $\hat{\mathbf{r}}$ 32 Linear(128, 128) + ReLU 1 Linear(128, 5) 1 Sigmoid \rightarrow output \hat{h}, \hat{v} 1	Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU	2 4 8
\downarrow Sigmoid \rightarrow output $\hat{\mathbf{r}}$ 32Linear(128, 128) + ReLU1Linear(128, 5)1Sigmoid \rightarrow output \hat{h}, \hat{v} 1	Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU	2 4 8 16
Linear(128, 128) + ReLU1Linear(128, 5)1Sigmoid \rightarrow output \hat{h}, \hat{v} 1	Upsample1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU Upsample1D(2) + Conv1D(128, 128, 3, 1, 1)	2 4 8 16 32
Linear(128, 5)1Sigmoid \rightarrow output \hat{h}, \hat{v} 1	$\begin{array}{l} Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1)\\ \downarrow Sigmoid \rightarrow output \hat{\mathbf{r}} \end{array}$	2 4 8 16 32 32
Sigmoid \rightarrow output \hat{h}, \hat{v} 1	$\label{eq:2.1} \begin{array}{l} Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1)\\ {}_{\downarrow} Sigmoid \rightarrow output \hat{\mathbf{r}}\\ Linear(128, 128) + ReLU \end{array}$	2 4 8 16 32 32 1
	$\label{eq:2.1} \begin{array}{l} Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1) + ReLU\\ Upsample 1D(2) + Conv1D(128, 128, 3, 1, 1)\\ {}_{\downarrow} Sigmoid \rightarrow output \hat{\mathbf{r}}\\ Linear(128, 128) + ReLU\\ Linear(128, 5) \end{array}$	2 4 8 16 32 32 1 1

Table 2: Architecture of the shape network f_S . The network outputs radius column $\hat{\mathbf{r}}$, height \hat{h} and camera pose \hat{v} from two branches.

Additional decomposition and relighting results of real vases are shown in Fig. 3 (from Metropolitan Museum collection [2]) and in Fig. 4 (from Open Images [3]). See the video for more visual results, including animations of rotating vases as well as relighting effects.

Encoder	Output size
Conv(3, 64, 4, 2, 1) + GN(16) + LReLU(0.2)	128×128
Conv(64, 128, 4, 2, 1) + GN(32) + LReLU(0.2)	64×64
Conv(128, 256, 4, 2, 1) + GN(64) + LReLU(0.2)	32×32
Conv(256, 512, 4, 2, 1) + GN(128) + LReLU(0.2)	16×16
Conv(512, 512, 4, 2, 1) + GN(128) + LReLU(0.2)	8×8
Conv(512, 512, 4, 2, 1) + LReLU(0.2)	4×4
Conv(512, 128, 4, 1, 0) + ReLU	1×1
Decoder	Output size
Decoder Deconv(128, 512, (2,6), 1, 0) + ReLU	Output size 2×6
Decoder Deconv(128, 512, (2,6), 1, 0) + ReLU Upsample(2) + Conv(512, 256, 3, 1, 1) + GN(64) + ReLU	Output size 2×6 4×12
Decoder Deconv(128, 512, (2,6), 1, 0) + ReLU Upsample(2) + Conv(512, 256, 3, 1, 1) + GN(64) + ReLU Upsample(2) + Conv(256, 128, 3, 1, 1) + GN(32) + ReLU	Output size 2×6 4×12 8×24
Decoder Deconv(128, 512, (2,6), 1, 0) + ReLU Upsample(2) + Conv(512, 256, 3, 1, 1) + GN(64) + ReLU Upsample(2) + Conv(256, 128, 3, 1, 1) + GN(32) + ReLU Upsample(2) + Conv(128, 64, 3, 1, 1) + GN(16)	Output size 2×6 4×12 8×24 16×48
Decoder Deconv(128, 512, (2,6), 1, 0) + ReLU Upsample(2) + Conv(512, 256, 3, 1, 1) + GN(64) + ReLU Upsample(2) + Conv(256, 128, 3, 1, 1) + GN(32) + ReLU Upsample(2) + Conv(128, 64, 3, 1, 1) + GN(16) ↓ Sigmoid → output \hat{E}	Output size 2×6 4×12 8×24 16×48 16×48
Decoder Deconv(128, 512, (2,6), 1, 0) + ReLU Upsample(2) + Conv(512, 256, 3, 1, 1) + GN(64) + ReLU Upsample(2) + Conv(256, 128, 3, 1, 1) + GN(32) + ReLU Upsample(2) + Conv(128, 64, 3, 1, 1) + GN(16) ↓ Sigmoid → output \hat{E} Linear(128, 128) + ReLU	Output size 2×6 4×12 8×24 16×48 16×48 1
Decoder Deconv(128, 512, (2,6), 1, 0) + ReLU Upsample(2) + Conv(512, 256, 3, 1, 1) + GN(64) + ReLU Upsample(2) + Conv(256, 128, 3, 1, 1) + GN(32) + ReLU Upsample(2) + Conv(128, 64, 3, 1, 1) + GN(16) ↓ Sigmoid → output \hat{E} Linear(128, 128) + ReLU Linear(128, 2)	Output size 2×6 4×12 8×24 16×48 16×48 1 1

Table 3: Architecture of the light network f_L . The network outputs environment map \hat{E} and specular albedo $\hat{\rho}$ from two branches.

Encoder	Output size
Conv(3, 64, 4, 2, 1) + IN + LReLU(0.2)	128×128
Conv(64, 128, 4, 2, 1) + IN + LReLU(0.2)	64×64
Conv(128, 256, 4, 2, 1) + IN + LReLU(0.2)	32×32
Conv(256, 512, 4, 2, 1) + IN + LReLU(0.2)	16×16
Conv(512, 512, 4, 2, 1) + IN + LReLU(0.2)	8 imes 8
Conv(512, 512, 4, 2, 1) + IN + LReLU(0.2)	4×4
Decoder	Output size
Upsample(2) + Conv(512, 512, 3, 1, 1) + IN + SC + ReLU	8×8
Upsample(2) + Conv(512, 256, 3, 1, 1) + IN + SC + ReLU	16×16
Upsample(2) + Conv(512, 256, 3, 1, 1) + IN + SC + ReLU	32×32
Upsample(2) + Conv(256, 128, 3, 1, 1) + IN + SC + ReLU	64×64
Upsample(2) + Conv(128, 64, 3, 1, 1) + IN + SC + ReLU	128×128
Upsample(2) + Conv(64, 3, 3, 1, 1)	256×256
Tanh \rightarrow output \hat{A}	256×256

Table 4: Architecture of the albedo network f_A . The network follows a U-Net structure with skip-connections and replaces deconvolution with nearest neighbor upsampling followed by convolution.

Encoder	Output size
Conv(3, 64, 4, 2, 1) + IN + LReLU(0.2)	32×32
Conv(64, 128, 4, 2, 1) + IN + LReLU(0.2)	16×16
Conv(128, 256, 4, 2, 1) + IN + LReLU(0.2)	8 imes 8
Conv(256, 512, 4, 2, 1) + LReLU(0.2)	4×4
$Conv(512, 1, 4, 1, 0) \rightarrow output \ scalar$	1×1

Table 5: Architecture of the discriminator network D. The network outputs a single scalar for each input patch.

References

- [1] Cc0 textures. https://cc0textures.com. Accessed: 2020-06. 1
- [2] The metropolitan museum of art open access. https:// metmuseum.github.io. Accessed: 2020-06. 2, 4

Figure 1: Qualitative comparison of the ablation experiments and the supervised baseline.

Figure 2: Examples of the synthetic vases.

[3] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari. The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. *IJCV*, 2020. 2, 4

- [4] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker. Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and svbrdf from a single image. In CVPR, 2020. 1
- [5] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In *ICML*, 2013. 1
- [6] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2017. 1
- [7] Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining Guo. All-frequency rendering of dynamic, spatiallyvarying reflectance. ACM TOG, 2009. 1
- [8] Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018. 1

Figure 3: Additional results on Metropolitan Museum collection [2].

Figure 4: Additional results on Open Images vases [3].