
Supplementary Material
SceneGraphFusion: Incremental 3D Scene Graph Prediction

from RGB-D Sequences

8. Network Architecture
We use FC(in, out) denote a fully-connected layer, and

MLP(·, ..., ·) as a set of FC layers with a ReLU activa-
tion between each FC layer. Our PointNet encoder fp, is a
shared-weight MLP(64, 128, 512) followed by a maximum
pooling operation to obtain a global feature. The other lay-
ers are listed in Tbl. 10.

9. Training Details
All the models in our evaluation section (Sec. 6) were

trained with the same set up but with different training data
for 150 epochs. We use AdamW [3] optimizer with Ams-
grad [6] and an adaptive learning rate, inverse proportional
to the log of the number of edges. Given a training batch
with n edges and lrbase = 1e−3, the base learning rate in
AdamW is adjusted as follows

lr = lrbase
1

lnn
. (11)

The training data are the 3D reconstructions created from
RGB-D sequences. In order to train our network to handle
partial data, subgraphs are randomly extracted during train-
ing time. In each iteration, two segments are randomly se-
lected together with their four-hop neighbor segments. We
further randomly discard edges with a dropout rate of 50%.
In addition, we randomly sample points in each segment.
The properties described in Sec 3.1 are computed based on
sampled points. For the training loss, we follow the ap-
proach in [11] with a weight factor of 0.1 between the ob-
ject and predicate loss. We use two message passing layers,
each with 8 heads.

10. Experiment Details
In this section, we detailed the training dataset and the

hyper-parameters used in the experiment section (Sec 6.1
Geometric Segments) of our main paper. As mentioned in
the main paper, 20 NYUv2 [5] object classes are used. For
predicates, we focus on support relationships. We further
filter out rare relationship. A predicate is discarded if it

occurs less than 10 times in the training data or less then
5 times in the test data. This leaves us with 8 predicates,
i.e. supported by, attached to, standing on, hanging on, con-
nected to, part of, build in, and same part.

The geometrical segmentation method [7] in our frame-
work uses the pyramid level of 2, which scales the input
image with a factor of 2, for image segmentation. Further,
we filter out segments with less than 512 points.

11. 3D Panoptic Segmentation

On Tbl. 12 we report the complete panoptic segmen-
tation evaluation on Tbl. 4. With respect to the panoptic
quality (PQ), our method outperforms PanopticFusion in 7
out of 20 classes. The PQ can be broken down into seg-
mentation quality (SQ) and recognition quality (RQ). The
SQ evaluates only the matched segments, via an intersec-
tion over union (IoU) score over 50%. RQ is known as
the F1 score. Our method has a similar SQ performance
as PanopticFusion while performing worse when compared
with the RQ metric. This is likely due to missing scene ge-
ometry caused by the incremental segmentation [7] that our
approach relies on. By using a metric that is less influenced
by missing points, i.e. SQ, or ignoring the missing points in
the evaluation, our method has equivalent or slightly better
performance compare to PanopticFusion [4].

12. Robustness against Missing Information

Tbl. 11 shows the complete experiment mentioned in
Sec 6.2 of the main paper. We use our network architecture
with different attention methods. The update of the node
feature vi in equation 7 can be re-written as follows:

v`+1
i = ge

(
[v`i ,Φj∈N (i) (Ψ (·))]

)
, (12)

where Φ is a permutation in-variance function, e.g. sum,
mean or max, and Ψ(·) represents an attention function. For
without, we set Ψ(·) to Ψ(v`j) = v`j with Φ =

∑
. For

SDPA, the Ψ(·) is set to fsdpa(v`i ,v
`
j) with Φ =

∑
, where

fsdps is the multi-head attention method [8] and for GAT,
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Figure 7. The difference of the confusion matrix without and with
(50%) dropping of edges.

we directly use the Pytorch implementation [2] to update
nodes respectively.

The proposed attention method consistently outperforms
others even when the edges are dropped by 50%. There
are some classes that are more robust to missing informa-
tion, such as a chair, curtain, desk, floor, and wall while
some classes are more dependant on others such as bathtub,
bed, shower curtain, and window. We visualize this effect
by plotting the difference of the confusion matrix with and
without dropping of edges, see Fig. 7. It can be seen that
beds and pictures are easier to predict when full edges are
provided.

13. Runtime Analysis
In the following a more detailed runtime analysis is given

in terms of the number of segments and data re-usage and
graph structure update.

We report the analysis using scene scene0645 01
which consists of 5230 paired RGB and depth images. The
average update of node, edge, GNN features and the class
predictions are listed on Tbl. 9. The computation time over-
time is reported on Fig. 8. By updating node and edge
features with our graph structure, the computation time is
significantly reduced. Again, our scene graph prediction
method runs in a different thread and will only block the
main thread in the data copy and fusion stage.

14. Qualitative Result
We demonstrate more qualitative results in the 3D scene

graph prediction on both 3RScan [10] and ScanNet [1].
Note that ScanNet does not have ground truth relationships.

# computations times (ms)
Node Feature 2.13 2.49
Edge Feature 20.83 1.53
GNN Feature 1 20.83 14.28
GNN Feature 2 57.88 44.06
Class Prediction 57.88 9.74

Table 9. The average number and time of computation on each
feature computation process on the sequence of scene0645 01

We therefore use the trained model with 3RScan to do in-
ference on ScanNet scenes. Our method is able to handle
the domain gap across these two datasets and predicts rea-
sonable 3D scene graphs on ScanNet scenes.

The results are shown on Fig. 9, Fig. 10 and Fig. 11.
Segments are represented by circles and estimated object
instances are drawn as rectangles. In our visualization, the
class prediction of a segment is correct if no label is shown
in the circle and wrong otherwise.

As for relationship prediction, we use green, red and
blue to indicate the correct, wrong, and unknown predic-
tions respectively. An unknown prediction is a case where
no ground truth data is available. The label on an edge with-
out bracket is the predicted label, with bracket is its ground
truth label. To simplify the visualization, we ignore none-
relationships and merge segments with same part relation-
ships in the same box. We also group up predictions of
segments with the same label within the same box. The
indication of such a grouped prediction is shown by con-
necting box to box. As for the wrongly predicted segments,
their predicted probability remains individual. This indi-
cated with an edge from a circle to a box.

Function Layer Definition
gv, ga MLP(768, 768, 512)
ge MLP(1280, 768, 256)
ĝq, ĝe FC(512, 512)
ĝτ FC(256, 256)

Table 10. Parameters of the layers in our GNN. FC(·, ·) represents
fully connected layer, and MLP(·, ..., ·) represent FC(·, ·) layers
with ReLU activation between them.
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Figure 8. The computation time of the scene graph prediction over time.

bath bed bkshf cab. chair cntr. curt. desk door floor ofurn pic. refri. show. sink sofa table toil wall wind. avg
without 50.0 3.9 0.0 27.0 51.7 16.7 62.2 20.0 16.4 96.2 15.4 8.0 4.3 11.1 52.5 45.9 54.2 41.7 67.0 26.2 33.5
SDPA[8] 50.0 11.1 2.3 26.0 45.7 17.7 65.2 3.9 18.7 87.4 11.2 4.8 2.5 29.4 38.1 60.8 36.8 65.0 60.1 24.0 33.0
GAT[9] 22.0 5.7 0.0 10.9 22.8 11.0 37.6 1.8 9.4 19.8 3.1 1.3 0.0 0.0 10.4 33.0 12.0 8.7 8.7 11.9 11.5
ours 83.3 24.3 0.0 43.4 69.8 30.0 68.7 4.5 29.6 98.1 26.6 10.0 34.5 66.7 65.0 74.7 54.2 86.5 75.3 41.7 49.3
without@p50 37.5 3.7 0.0 24.8 49.9 13.3 52.3 17.3 14.9 86.8 19.9 5.0 5.8 6.2 46.7 36.4 37.3 46.0 63.5 22.8 29.5
SDPA@p50 45.5 8.5 0.0 24.2 45.0 8.8 59.9 6.5 16.1 81.2 11.0 4.0 3.4 23.1 35.5 54.2 36.3 47.7 59.6 23.1 29.7
GAT[9]@p50 26.5 2.3 0.0 14.6 21.9 4.6 34.9 0.0 8.4 18.6 4.7 1.2 7.1 17.6 7.9 30.2 11.2 8.9 17.1 12.9 12.5
ours@p50 61.1 14.3 7.9 35.1 62.0 23.8 59.5 4.3 23.4 96.7 25.6 6.7 19.4 41.2 63.2 65.2 47.4 73.7 72.2 34.6 41.9

Table 11. Ablation study: Segment classification of InSeg [7] on 3RScan [10] reporting avg. IoU on segment-level.

metric all things stuff bath bed bkshf cab. chair cntr. curt. desk door floor ofurn pic. refri. show. sink sofa table toil wall wind.
PanopticFusion [4] PQ 33.5 30.8 58.4 31.0 35.8 16.4 23.8 46.7 10.4 16.6 16.1 18.0 76.4 27.7 26.4 39.5 36.3 36.7 42.1 34.8 76.1 40.4 19.3
Ours (NN mapping) PQ 31.5 30.2 43.4 67.6 25.4 13.9 22.2 47.2 10.5 16.4 12.6 26.4 56.4 22.9 31.3 28.0 38.3 38.0 32.3 34.8 63.2 30.4 11.7
Ours (skip missing) PQ 36.3 51.0 34.7 68.4 28.0 16.0 26.4 58.1 15.6 24.7 17.7 28.7 64.5 26.9 35.4 30.8 40.7 41.3 38.8 45.6 66.2 37.4 15.2
PanopticFusion [4] SQ 73.0 73.3 70.7 75.3 70.1 73.9 71.1 74.3 65.1 72.3 61.7 76.0 77.4 75.8 71.2 77.7 79.5 72.7 74.6 74.3 81.4 64.0 72.5
Ours (NN mapping) SQ 72.9 73.0 72.6 80.6 68.2 66.9 71.1 76.5 61.7 75.1 63.8 77.4 74.8 71.6 81.5 77.8 79.1 75.4 65.3 73.3 80.2 70.4 68.2
Ours (skip missing) SQ 76.1 77.9 75.9 82.9 71.2 69.1 74.6 81.2 62.3 74.0 68.0 81.0 81.8 74.4 82.7 82.3 81.5 77.2 70.2 80.9 82.4 74.0 69.5
PanopticFusion [4] RQ 45.3 41.3 80.9 41.2 51.1 22.2 33.5 62.8 16.0 23.0 26.0 23.6 98.7 36.5 37.1 50.8 45.7 50.5 56.3 46.9 93.5 63.1 26.7
Ours (NN mapping) RQ 42.2 40.3 59.3 83.9 37.2 20.7 31.3 61.7 17.1 21.8 19.7 34.1 75.4 31.9 38.5 36.0 48.5 50.3 49.5 47.5 78.9 43.2 17.1
Ours (skip missing) RQ 46.8 64.7 44.8 82.5 39.4 23.2 35.4 71.6 25.0 33.3 26.0 35.4 78.8 36.1 42.8 37.4 50.0 53.5 55.3 56.4 80.4 50.6 21.9

Table 12. The full 3D panoptic segmentation results on the ScanNet v2 open test set.
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Figure 9. Qualitative results of our method on example scenes from 3RScan [10].
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Figure 10. Qualitative results of our method on relative large scenes from 3RScan [10].
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Figure 11. Qualitative results of our method on the scenes from ScanNet [1].
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