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9. Structure of StyleGAN2 StyleSpace
To supplement the description of the different StyleGAN2 latent spaces in Section 3, here we describe the structure of the

StyleSpace S in more detail. Every major layer (every resolution) of the StyleGAN2 generator (synthesis network) consists
of two convolution layers for feature map synthesis and a single convolution layer that converts the second feature map into
an RGB image (referred to as tRGB), as shown in Figure 9. Each of these three convolution layers is modulated by a vector
of style parameters. We denote the three different vectors of style parameters as s1, s2, and stRGB . These are obtained from
the intermediate latent vectors w ∈ W via three affine transformations, w1 → s1, w2 → s2, w2 → stRGB . InW space, w1

and w2 are the same vector, and it is the same vector for all layers. InW+ space, w1 and w2 are two different vectors, and
every major layer has its own pair (w1, w2). The length of all the w vectors is 512. The numbers of style parameters used by
the different layers are listed in Table 2. Note that in 4x4 resolution, there is only s1 and stRGB . The length of s is 512 from
the early layers until layer 14. After that layer, the length decreases from 256 to 32. In total, for a 1024x1024 generator, there
are 6048 style channels that control feature maps, and 3040 additional channels that control the tRGB blocks.
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Figure 9. The internal structure of StyleSpace S, shown for the 512× 512 generator resolution.
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W+ layer index S layer index resolution layer name type # channels
0 0 4×4 Conv s1 512
1 1 4×4 ToRGB stRGB 512
2 2 8×8 Conv0 up s1 512
3 3 8×8 Conv1 s2 512
3 4 8×8 ToRGB stRGB 512
4 5 16×16 Conv0 up s1 512
5 6 16×16 Conv1 s2 512
5 7 16×16 ToRGB stRGB 512
6 8 32×32 Conv0 up s1 512
7 9 32×32 Conv1 s2 512
7 10 32×32 ToRGB stRGB 512
8 11 64×64 Conv0 up s1 512
9 12 64×64 Conv1 s2 512
9 13 64×64 ToRGB stRGB 512

10 14 128×128 Conv0 up s1 512
11 15 128×128 Conv1 s2 256
11 16 128×128 ToRGB stRGB 256
12 17 256×256 Conv0 up s1 256
13 18 256×256 Conv1 s2 128
13 19 256×256 ToRGB stRGB 128
14 20 512×512 Conv0 up s1 128
15 21 512×512 Conv1 s2 64
15 22 512×512 ToRGB stRGB 64
16 23 1024×1024 Conv0 up s1 64
17 24 1024×1024 Conv1 s2 32
17 25 1024×1024 ToRGB stRGB 32

Table 2. Breakdown of StyleSpace channels by generator layers.
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10. Effect of style parameters in tRGB layers
To examine the function of style parameters that control the tRGB layers, we randomly generate a set of 500K style

vectors s ∈ S, and perturb their stRGB channels to manipulate the tRGB layers, snew = soriginal + nσ(s). σ(s) is the
standard deviation of each channel of s over the generated set, used to normalize the amount of perturbation across different
channels [3]. n is a vector of Gaussian noise, with mean 0 and standard deviation σ(n), which indicates the manipulation
strength. Below, we use σ(n) = 15.

As shown in Figure 10, manipulating the early (coarse) resolutions (0,1,2) mainly affects the center of the target object
(better visible in faces than in cars), manipulating the middle resolutions (3,4,5) typically affects the entire target object,
and manipulating the late (fine) resolution layers (6,7,8) affects the entire image. (The LSUN Car model reaches only up to
512×512, thus the fine resolution layers are (6,7)). The effect of the late (fine) resolution layers on the image is significantly
stronger than that of the early and middle layers. The manipulations only affect color, without modifying shape or specific
face or car related attributes.

Original Early Mid Late All Original Early Mid Late All

Original Early Mid Late All Original Early Mid Late All

Figure 10. Manipulation by perturbing the stRGB channels in early resolution layers (0,1,2), middle layers (3,4,5) and late layers (6,7,8).
Each of the four blocks above uses the same noise vector n.
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11. Locally-active style channels
The number of locally-active channels that we found using the method in Section 4 for each of the three models we

experimented with is summarized in Table 3. The breakdown of these localized controls across different semantic regions is
plotted in Figure 11. Not all of the detected controls correspond to semantically meaningful manipulations. While there is
no way to objectively determine which manipulations are meaningful, in Table 4 we report the number of manipulations that
were (subjectively) determined as meaningful by the authors, among the most highly localized controls.

FFHQ LSUN Bedroom LSUN Car

Num. locally-active channels 1871 421 913
Total num. of feature map style channels 6048 5376 5952
Percent of locally-active channels 30.9% 7.8% 15.3%

Table 3. Number of locally-active channels detected in different StyleGAN2 models.
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Figure 11. Breakdown of detected localized controls across different semantic regions.

Top 5 Top 10 Top 20

Eyebrows 5 10 19
Hair 5 9 17
Nose 4 7 13
Mouth 4 7 11
Clothes 5 6 9
Neck 2 4 7
Eye 4 5 6
Ear 3 4 6
Background 5 10 15

Table 4. Number of meaningful controls among the top k = 5, 10, 20 most locally-active channels (those with the highest overlap
coefficient, as defined by equation (1) in the main paper) in each semantic area (for the FFHQ model). Note that this count is subjective
and may contain channels that control similar things (for example, size of lips).
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Finally, Figure 12 demonstrates (in addition to Figure 1) the high degree of disentanglement of the localized controls that
our method detects. Even pairs of controls that affect the same semantic region, typically do so in an independent manner.
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Figure 12. Disentanglement in style space, demonstrated using three different datasets (FFHQ, LSUN Bedroom, LSUN Car). Each of
the six groups above shows two manipulations that occur independently inside the same image. The indices of the manipulated layer and
channel are indicated in parentheses.
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12. Attribute-specific channels
Starting from the 40 attributes from CelebA [4], we first remove inactivated, ambiguous and neutral attributes. Inactivated

attributes (defined in Section 3) are those that are not well represented in the generated image distribution. Ambiguous
attributes are highly subjective. Neutral attributes are those in between more extreme states, or attributes that are highly
common across the dataset. For example, “mouth slightly open” is between an open mouth and a closed one. Another
example of a neutral attribute is “no beard”, since most of the faces in FFHQ don’t have a beard. The attributes that were
found inactivated, ambiguous, or neutral, and were removed from further consideration are listed in Table 5.

status type # attributes list of attributes

removed

inactivated 9
blurry, narrow eyes, necklace,
oval face, rosy cheeks, pointy noise,
bald, mustache, pale skin

ambiguous 2 attractive, heavy make up

neutral 3 no beard, five-o-clock shadow,
mouth slightly open

annotated

one or more
disentangled
single-channel
controls found

16

gender, smiling, lipstick,
eyeglasses, bangs, wavy hair,
earrings, black hair, blond hair,
sideburns, goatee, receding hairline,
gray hair, suit (tie), double chin, hat

no disentangled
single-channel
controls found

10

bags under eyes, big nose,
high cheekbones,
young, arched eyebrows, brown hair,
big lips, bushy eyebrows,
chubby, straight hair

Table 5. For 40 CelebA attributes, we first remove inactivated (9), ambiguous (2) or neutral (3) attributes. Our method is able to detect one
or more disentangled single-channel controls for 16 out of the 26 remaining attributes.

To find attribute-specific controls we apply our method described in Section 5 on the remaining 26 attributes. We found
that 16 out of the 26 remaining attributes are controllable by one or more single style channels, in a disentangled manner.
Our method was not able to identify any disentangled single-channel controls for the other 10 attributes. All of the above
attributes are listed in Table 5. The attributes for which no disentangled single-channel controls were found indeed appear to
be correlated with other visual attributes (in FFHQ). For example, “bags under eyes” is correlated with eye size, “big lips” is
correlated with skin color, and “high cheekbones” is correlated with smiling.

While our method could not find a disentangled single-channel control for the “young” attribute, it was able to find such
controls for wrinkles, eyeglasses, and gray hair. Because all of these attributes are correlated with age, the “young” attribute
can only be controlled by manipulating multiple style channels, rather than a single one.

Note that although the attribute-specific detection method of Section 5 could not detect a single-channel control for either
“arched eyebrows” or “bushy eyebrows”, our locally-active detection method in Section 4 was able to find disentangled
controls for these attributes: (9,30) for arched eyebrows, and (12,325) for bushy eyebrows. Thus, these could be considered
as failure cases for our attribute-specific detection method.

Table 6 lists the various attributes and the single-channel controls that were detected for them. For each control we list the
layer and channel number, as well as its rank by the detection method of Section 5.
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region attribute (layer,channel,rank) related attributes

hair

black hair (12,479,1) different hair color, lighting

blond hair (12,479,1)
(12,266,3) gender, other hair color and style

gray hair (11,286,1) glasses, gender, wrinkle and beard

wavy hair

(6,500,1)
(8,128,2)
(5,92,3)
(6,394,7)
(6,323,28)

hair style, gender

bangs

(3,259,1)
(6,285,2)
(5,414,3)
(6,128,4)
(9,295,8)
(6,322,9)
(6,487,11)
(6,504,14)

hair style

receding hairline

(5,414,1)
(6,322,2)
(6,497,3)
(6,504,8)

hair style

mouth smiling (6,501,1) size of face or eye
lipstick (15,45,1) gender, face expression

beard sideburns (12,237,2) other type of beard, gender
goatee (9,421,1) other type of beard, gender

chin double chin (9,132,1) size of neck, wrinkle

ear
earrings
(entangled with gender) (8,81,1) gender, face shape

eye glasses

(3,288,1)
(2,175,3)
(3,120,4)
(2,97,6)

gender, wrinkle and beard

clothes suit (tie)

(9,441,1)
(8,292,2)
(11,358,3)
(6,223,11)

cloth style

hat hat size (5,200,7) nothing change
overall gender (9,6,1) beard,hair style

Table 6. List of attributes and the single-channel controls that were detected for them. The indices of layers and channels start from 0,
while ranks start from 1.

7



13. Attribute Dependency
To compare the disentanglement of different image manipulation methods, we propose a general disentanglement metric

for real images, which we refer to as Attribute Dependency (AD). Attribute Dependency measures the degree to which manip-
ulation along a certain direction induces changes in other attributes, as measured by classifiers for those attributes. Below we
share our insights regarding AD, and its implementation details. Next, we use AD to show our image manipulation method
is more disentangled that two other methods (GANSpace [3], InterfaceGan [8]) in Figure 15 and Figure 16. Additionally, we
further show in Figure 21 that our method changes face identity less than GANSpace and InterFaceGAN.

For a given target attribute t, we measure AD as follows. First, we sample a set of images without the target attribute t
(e.g., without gray hair), and manipulate them towards the target attribute, by a certain amount measured by the change in the
logit outcome ∆lt of a classifier pretrained to detect attribute t. Next, we measure the change of logit ∆li between the original
images and the manipulated ones for other attributes ∀i ∈ A\t, whereA is the set of all attributes. Each change is normalized
by σ(li), the standard deviation of the logit value for attribute i over a large set of generated images. We measure mean-AD,
defined as E( 1

k

∑
i∈A\t(

∆li
σ(li)

)), where k = |A| − 1. Similarly, we measure max-AD, defined as E(maxi∈A\t(
∆li
σ(li)

)).

13.1. Insights

To measure how much a specific attribute i ∈ A\t has changed, we use a pretrained classifier for that attribute. Under
normal operating mode, a binary classifier outputs a logit li ∈ [−∞,+∞], which is then converted to a probability value in
[0, 1], with positive logit values yielding probabilities higher than 0.5, and negative logit values yielding probabilities lower
than 0.5. However, classifiers trained on real data may be affected by entanglement present in the training data, and they
are often unable to detect the presence or absence of an attribute in a disentangled manner. For example, a female face
with lipstick will typically cause the classifier to output a negative logit value (indicating the presence of a lipstick), but the
classifier might output a positive logit value given a face of a male with lipstick. Similarly, a gray hair classifier will output
a negative logit value for a male with gray hair, but might output a positive logit value for a female with gray hair. This is
demonstrated in Figures 13 and 14.

Thus, when attempting to measure the magnitude of change of an attribute, we choose not to consider the classifier’s logit
sign or value; rather, we find that the change in the logit value, ∆l, appears to be better correlated with an image space change
in the attribute. We use the change in the logit, rather than the change in the probability because of the saturating effect of
the sigmoid non-linearity that is used to convert logits to probabilities. For example, the probability produced by a lipstick
classifier for a female wearing a lighter lipstick and a stronger lipstick is going to be nearly the same, while this is not the
case for the logit values (see the last row of Figure 13).

Another insight is that if the manipulation strength is too high, the generated images will be unrealistic, and classifiers will
give unexpected predictions. It is crucial not to use too high manipulation strengths to make sure the logits are meaningful. If
the generated images are realistic, the logit is nearly a monotonic function of the strength of target attribute. And we consider
the manipulation strength is a monotonic function of strength of target attribute. Therefore, we can control the amount of
manipulation (measured by ∆l) by searching for the corresponding manipulation strength through bisection method.

Our final insight is that the classifiers are not immune to noise. When provided with the same images with only slight
texture changes in hair and background, the classifiers are supposed to output the same logits. In practice, however, the logits
are slightly different. Thus, when comparing the effect of different manipulation methods on various attributes, it is necessary
to ensure that the differences in the measurements are caused by the inherent differences between the methods, rather than
by noise in the classifier outputs.

13.2. Implementation

We randomly generate 500K images, as our image bank, and annotate each image with 31 active attributes, same as
was done in Section 3, where a negative logit corresponds to presence of the target attribute in an image. Let σ(l) denote
the standard deviation of logits over the entire image bank. For each target attribute (for example, gray hair), we rank its
logit from negative to positive, and take images with 50-75% quantile as manipulation candidates, since they exhibit little to
mild presence of the target attribute (without much gray hair). We don’t take images with the most positive logit (75-100%
quantile) since they are less likely to result in a realistic manipulation. Candidates are manipulated toward strong attribute
presence (adding gray hair, more negative logit). We set the ∆lt = rσ(lt), where r ∈ {0.25, 0.5, 0.75, 1}. r should not
be too large to make sure that most of the manipulated images are still realistic. Then we use the bisection method to find
the manipulation strength m that can generate an image with final logit |(lfinalt − (linitialt −∆lt))| < rtoleranceσ(lt) with
rtolerance = 5%, and ignore images that don’t converge after 20 iterations. We manually set the maximum manipulation
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Figure 13. Logits of lipstick classifier. The strength of attribute is reduced from left to right. The classifier logit is on top of each image,
increasing from left to right. Note that the logit sign is not aligned with the presence of the attribute: there are images with strong lipstick,
but a positive logit.
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Figure 14. Logits of hair greyness classifier. The strength of attribute is reduced from left to right. The classifier logit is on top of each
image, increasing from left to right. Note that the logit sign is not aligned with the presence of the attribute: there are images with strong
hair greyness, but a positive logit.
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Figure 15. Comparison with state-of-the-art methods with amount of manipulation ∆lt = 1.5σ(lt). We deliberately choose a strong
manipulation (1.5 instead of 1) to emphasize the differences.
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Figure 16. Max-AD vs. the degree of target attribute manipulation (∆lt/σ(lt)). Lower max-AD indicates better disentanglement.

strengthmmax such that almost all manipulated images with manipulation strengthmmax strongly exhibit the target attribute,
but still look realistic. mmax is used to initiate the bisection method.

Next, we add a control group with r = 0 to the experiment, such that ∆lt = 0σ(lt). This group is used to represent
the inherent noise of classifiers. The input images are copies of the original ones, obtained by keeping the latent code s
unchanged, but changing the noise inputs at different layers. They are essentially identical to the original images, with subtle
differences in hair, skin, and background.

Finally, we use the same 3K images with identifiable m for all candidate manipulation methods to calculate mean-AD and
max-AD. The mean-AD for the three methods (GANSpace, InterFaceGAN, and ours) for three attributes (gender, gray hair,
and lipstick) are plotted in Figure 8, and the max-AD in Figure 16. Figures 6 and 15 show a qualitative comparison between
the manipulations produced by the three methods. Note that, like in Figure 6, the Lipstick manipulation by InterFaceGAN
significantly changes the identity of the person, and the Gray hair manipulation adds wrinkles. GANSpace manipulations
also exhibit some entanglement (Lipstick affects face lightness, Gray hair ages the rest of the face). In contrast, our approach
appears to affect only the target attribute. Our Gender manipulation, for example, does not affect the hair style, and minimally
changes the face, yet the gender unmistakably changes.

13.3. Identity change

In addition to AD, we use another metric (identity change) to compare our method against GANSpace and InterFaceGAN.
Specifically, we use FaceNet [7], which is a standard network for measuring identity change. We use the official implemen-
tation, which first detects faces, then crops faces out, obtains an embedding from the last layer, and calculates the Euclidean
norm between the embedding of the original images and that of the manipulated ones. As shown in Figure 21, manipulations
done with our method change the identity less than manipulations of GANSpace or InterFaceGAN.
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14. Manipulation of real images
To manipulate real images, it is necessary to first invert them into latent codes. Through latent optimization [5], we

observe that the reconstruction quality is the highest when optimizing in S, followed by W+, and is the lowest for W , as
demonstrated in Figure 17. However, the naturalness of subsequent manipulation is the best when the latent optimization is
done inW , followed byW+, and the worst for S, as shown in Figure 18. Through training a latent embedding encoder and
using the embedding produced by the encoder as the initial point for a few iterations of latent optimization, we obtain both
good reconstruction and natural manipulation. We demonstrate manipulation of real images in Figure 19 (for real images
from the FFHQ dataset) and in Figure 20 for images from the CelebA-HQ [6] dataset.

15. Additional Comparisons
We compare our method to two other image manipulation methods, Image2stylegan++ [1] and StyleFlow [2].
Figure 22 shows a comparison with Image2stylegan++ [1], where users can edit an image by drawing strokes over it, and

the annotated image is then inverted into the StyleGAN latent space, which is supposed to result in a realistic rendering. For
example, in order to change the hair color, the user must place strokes of the desired color in the hair region. As demonstrated
in Figure 22, the method isn’t necessarily successful in producing a realistic edit in this manner, while our generates more
realistic results. It should also be pointed out that more complex edits, such as changing gender or adding wrinkles is difficult,
if not impossible, to convey by such user-drawn strokes.

Figure 23 shows a comparison with StyleFlow [2], where it may be seen that our method and StyleFlow are bot able to
generate convincing results of comparable realism. However, StyleFlow simultaneously uses several attribute classifiers and
regressors (from the Microsoft face API), and is thus able to manipulate a limited set of attributes. In contrast, our method
only requires one target attribute.
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Original W W+ S

Figure 17. Inversion via latent optimization in W , W+, S. It may be easily seen that the reconstruction is least accurate for W , more
accurate forW+, and is best for S
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Figure 18. Manipulation of style codes obtained by latent optimization inW ,W+, and S spaces. The exact same manipulation is applied
in each row. It may be seen that manipulation of codes optimized in S produces significant artifacts, while manipulation on codes optimized
inW produce more realistic results.
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Original Inverted Smile Lipstick Gaze Eye Shape Frown Eyebrows Goatee Bulbous Nose

Figure 19. Manipulation of real images using encoder-based inversion. Original images are from FFHQ, and were not part of the encoder’s
training set.

14



Original Inverted Smile Lipstick Gaze Eye Shape Frown Eyebrows Goatee Bulbous Nose

Figure 20. Manipulation of real images using encoder-based inversion. Original images are from CelebA-HQ, which were not part of the
encoder’s training set, and not part of the GAN training set (the StyleGAN2 model was trained on the FFHQ dataset).
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Figure 21. Identity change vs. the degree of target attribute manipulation (∆lt/σ(lt)). Lower identity changes indicates that the manipu-
lation is better disentanglement from the identity.
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Figure 22. Comparison between Image2stylegan++ [1] and our method. Our method typically succeeds in achieving more natural and
realistic results.
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Figure 23. Comparison between StyleFlow [2] and our method. Our method is typically more fine-grained, for example, it can change
gender without changing hair style, while StyleFlow usually changes the length of hair. In some edits, such as adding a smile, our method
introduces a more pronounced change, compared to StyleFlow. In other edits, such as adding a beard, both methods achieve similar results.
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