
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

Supplementary Material

Fanbo Xiang1, Zexiang Xu2, Miloš Hašan2, Yannick Hold-Geoffroy2, Kalyan Sunkavalli2, Hao Su1

1University of California, San Diego 2Adobe Research

1. Cube map Clarification

We briefly clarify our texture visualization (with cube-

maps) used in our main paper. As discussed in Sec. 3.3 in

the paper, we use spherical UVs for our texture mapping,

where u represents a point on the surface a unit sphere.

For all the figures in the main paper, we use cubemaps [1]

to visualize the spherical domain. A cubemap consists of

sixes faces of a unit box, recording all the color information

projected from a unit sphere (as shown in Fig 1), which is

widely used in graphics for spherical mapping. An alter-

native standard way to visualize a spherical function is to

use a equirectangle map. We show the correspondence be-

tween a cube map and a equirectangle map in Fig. 2. We

use cubemaps in the paper since they involve less distor-

tion, avoiding the distorted regions in the top and bottom of

equirectangle maps.

Figure 1. Cube map projection. The color at each point on the unit

sphere is projected to a point on the cube centered at the origin. A

cubemap is obtained by “opening up” the cube.

2. Network Implementation Details

2.1. Network structure

We show the detailed network architecture for

Fσ, Fuv, F
−1

uv and Ftex in Figure 3.

2.2. Training details in initialization

Here we describe in detail how we do the initialization

stage mentioned in Sec 4.2. in the paper. Given a point

Figure 2. Cube maps on the second row corresponds to the

equirectangle maps on the first row. They are different projections

of the same spherical texture. A cubemap has a smaller distortion

on the Y direction.

cloud from Colmap, we first downsample it to one with

2,000-3,000 points. We denote this point cloud as Pgt. We

then sample 2,500 points uniformly in the UV space (the

unit sphere). We denote the set of UV coordinates as P .

Chamfer loss. The Chamfer loss is simply the Cham-

fer distance between F−1

uv (P) and Pgt, where F−1

uv (P) cor-

responds to the point cloud generated by inverse-mapping

very UV in P to the 3D space using the network F−1

uv .

Lchamfer = Chamfer(F−1

uv (P), Pgt)

Inverse loss. We also leverage a loss that is similar to our

cycle loss to let the initialization also influence the texture

mapping network Fuv. In particular, instead of the 3D-to-

2D-to-3D cycle mapping used the cycle loss in Eqn. 12 of

the paper, we leverage a 2D-to-3D-to-2D cycle mapping in

the initialization, given by:

Lcycle2 = ||Fuv(F
−1

uv (P))− P ||2
2

.

Rendering and mask loss. The same rendering and

mask loss as described in section 4.1 are also applied in the

initialization stage. So the loss at initialization stage is

Linit = Lchamfer + aLcycle2 + bLrender + cLmask

where we set a = 100, b = c = 1.

Input Linear + ReLUCopyNetwork Layer Softplus Tanh

3 64 128 128 128 3
3 64 512 512 512 3

3

60

256 256 256 256 256 256 256 256 256 256 256 1

3

60

256 256 256 256 256 256 256

3

3

36

256 256 256 256 +3

Figure 3. Network structure for the 4 networks. x represents 3D coordinates. γ denotes positional encoding. u represents texture-space

points (3D points on the unit sphere). d represents a 3D unit vector for viewing direction. σ is predicted volumetric density. c is predicted

radiance.

3. Additional Results

3.1. Full quantitative comparison

We have shown the averaged quantitative results across

five DTU scenes in Tab. 1 of the paper. Detailed compar-

isons on individual scenes are provided in Table 1. Similar

to the average scores, though slightly worse than NeRF, our

method significantly outperforms other traditional and neu-

ral rendering methods.

3.2. Additional visual results

Figure 4 shows the visual comparison of different meth-

ods on the remaining 2 DTU scenes. Figure 5 shows ad-

ditional texture editing results. Please refer to the attached

video for more results on view synthesis and editing.

References

[1] Ned Greene. Environment mapping and other applications of

world projections. IEEE Computer Graphics and Applica-

tions, 6(11):21–29, 1986.

[2] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view synthe-

sis. arXiv preprint arXiv:2003.08934, 2020.

[3] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,

and Jan-Michael Frahm. Pixelwise view selection for unstruc-

55 83 114 118 122

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRN[5] 21.35 0.673 28.68 0.929 23.75 0.808 28.74 0.900 27.75 0.877

DeepVoxels[4] 17.21 0.532 23.76 0.858 17.97 0.606 23.18 0.764 22.12 0.748

Colmap[3] 21.25 0.784 27.11 0.921 20.69 0.809 27.43 0.907 26.66 0.905

NeRF[2] 26.78 0.913 31.77 0.952 27.38 0.918 33.98 0.954 33.72 0.955

Ours 22.67 0.808 30.61 0.931 26.45 0.891 30.67 0.916 30.75 0.925
Table 1. PSNR/SSIM for novel view synthesis quality on 4 held-out views on 5 DTU scenes.

GT Ours NeRF SRN DeepVoxels Colmap
Figure 4. Comparison on the remaining DTU scenes.

Input (a) NeuTex Render (b) Checkerboard (c) Cubemap (d) Texture Edit View 1 (e) Texture Edit View 2 (f) Edited Cubemap (g)

Figure 5. Additional texture editing on DTU scenes.

tured multi-view stereo. In European Conference on Com-

puter Vision (ECCV), 2016.

[4] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-

voxels: Learning persistent 3D feature embeddings. In CVPR,

pages 2437–2446, 2019.

[5] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.

Scene representation networks: Continuous 3d-structure-

aware neural scene representations. In Advances in Neural

Information Processing Systems, pages 1119–1130, 2019.

