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This supplementary document is organized as follows:
Sec. 1 provides the details of the ConvLSTM.
Sec. 2 provides the details of the FastDVDnet.
Sec. 3 provides quantitative comparisons in terms of SSIM and more qualitative results.

1. Details of ConvLSTM
The input sequence of the ConvLSTM consists of the feature maps FSR

[t−k:t+k] for each frame. For each time step, the
key equations are shown below (the feature maps of student and teacher can be represented by adding S and T subscripts
respectively, and we omit these subscripts here):

it =σ
(
Wfi ∗ FSR

t +Whi ∗Ht−1 +Wci ◦Ct−1 + bi

)
,

ft =σ
(
Wff ∗ FSR

t +Whf ∗Ht−1 +Wcf ◦Ct−1 + bf

)
,

Ct =ft ◦Ct−1 + it ◦ tanh
(
Wfc ∗ FSR

t +Whc ∗Ht−1 + bc

)
,

ot =σ
(
Wfo ∗ FSR

t +Who ∗Ht−1 +Who ◦Ct + bo

)
,

Ht =ot ◦ tanh (Ct) ,

(1)

where ◦ denotes the Hadamard product, ∗ denotes the convolution operator, σ is the sigmoid activation function and the
activation of input gate it controls whether the new input of the current time step will be engaged in the memory cell. ft
controls how much information will be kept from the past status Ct−1. ot decides the propagation from Ct to the hidden
state Ht. W∗ and b∗ denote the trainable parameters of the kernels and bias at the corresponding convolution layers. We
employ the memory state of the final time step as the distillation item, which contains temporal information.

We also investigate the impact of initializing the ConvLSTM in time distillation (TD) by: (a) Randomly initialize the
ConvLSTM and optimize its parameters during training; (b) pretrain a ConvLSTM for the task of video prediction and then
freeze its parameters during training; and (c) use the pretrained ConvLSTM in (b) and continue to update its parameters
during training. The results are shown in Table 1 and it is clear that the ConvLSTM in TD is not sensitive to initialization.
The ConvLSTM is designed for modeling long-term temporal correspondence, which plays an important role in capturing
temporal information in TD. Whether it is initialized randomly or not, the information extracted by the ConvLSTM is not
optimal. Only when we optimize the parameters of the student network and the ConvLSTM synchronously, the ConvLSTM
can extract features suitable for VSR.

Table 1: Analysis on the impact of initializing the ConvLSTM.

w/ TD (a) Random (b) Pretrain+freeze (c) Pretrain+optimize
Vid4-Average 25.87 25.79 25.86

2. Details of FastDVDnet
FastDVDnet [5] is originally proposed for video denoising in which five adjacent noisy inputs are used to reconstruct the

intermediate clear frame. Our experiment in Sec. 4 of the paper is mainly based on FastDVDnet. We change its structure to
make it suitable for the VSR task.



The architecture of FastDVDnet used in our experiment is shown in Fig. 1. Given seven consecutive video frames
I[t−3:t+3], we aim to super-resolve the intermediate frame and get the result SRt. (It−3, It, It+3), (It−2, It, It+2) and
(It−1, It, It+1) are respectively sent to the three subnets which share weights. Then, the output feature maps of the three
branches are input into the following subnet after concating operation, and the reconstructed result is obtained after the
pixel-shuffle [4] operation with the convolutional layer. The number of channels is the same as the original FastDVDnet.
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Figure 1: The architecture of FastDVDnet used for VSR. Seven consecutive frames are used to reconstruct the intermediate frame. The
skip-connections are omitted in the figure.

We use FastDVDnet as our main compact VSR network, the reasons are two-fold:
• To the best of our knowledge, the VSR methods published in top venues in the past two years mainly focused on

improving SR performance (i.e., PSNR). These methods CANNOT be regarded as “really compact” student networks.
• The recent FastDVDnet (CVPR 2020) has been proven effective and lightweight on video denoising. With simple

modification, it outperforms existing compact VSR networks such as VSRNet [2] and VESPCN [1]. Therefore, we
adopt it as a representative student network in our experiments.

3. More Experimental Results
In addition to the PSNR (dB) metric discussed in the paper, we further use SSIM metric for evaluation in Table 2. We also

show more visual results in Fig. 2 and Fig. 3.

Table 2: Quantitative comparisons of different methods on Vid4 and Vimeo90K-Test for 4× upscaling in terms of SSIM. Results are
evaluated on the Y (luminance) channel. ‘Frames’ means the number of input frames of the network. ‘FLOPs’ (T, 1012) is calculated on a
frame with the spatial resolution of 180 × 120. ‘Time’ is the average running time (ms) which is measured on Vid4-Walk in a per-frame
manner. F means the student network is trained with our STD scheme and ♣ means the student network is trained with the scheme
proposed in [3].

Method Frames Network performance Vid4 Vimeo
FLOPs Time Calendar City Foliage Walk Average Fast Medium Slow Average

Bicubic 1 - - 0.5720 0.6028 0.5666 0.7974 0.6347 0.8930 0.8592 0.8212 0.8568
TOFlow 7 0.81 632.0 0.7273 0.7446 0.7118 0.8799 0.7659 0.9420 0.9250 0.8890 0.9202
VSR-DUF 7 0.62 496.0 0.8110 0.8235 0.7709 0.9141 0.8318 0.9490 0.9430 0.9090 0.9369
EDVR 7 0.93 86.0 0.8056 0.8313 0.7695 0.9077 0.8286 0.9602 0.9477 0.9192 0.9438

VDSR 1 0.22 11.5 0.6351 0.6473 0.6250 0.8400 0.6869 0.9233 0.8969 0.8647 0.8945
VDSR♣ 1 0.22 11.5 0.6501 0.6623 0.6406 0.8517 0.7012 0.9223 0.8969 0.8694 0.8952
VDSRF 1 0.22 11.5 0.6683 0.6640 0.6390 0.8546 0.7065 0.9321 0.9088 0.8792 0.9064

VESPCN 3 0.26 21.3 0.6685 0.6785 0.6435 0.8523 0.7157 0.9344 0.9078 0.8787 0.9060
VESPCNF 3 0.26 21.3 0.7057 0.6847 0.6577 0.8699 0.7293 0.8409 0.9121 0.8805 0.9101
VSRNet 7 0.23 11.3 0.6200 0.6425 0.6295 0.8354 0.6819 0.8979 0.9006 0.8685 0.8979
VSRNetF 7 0.23 11.3 0.6479 0.6553 0.6394 0.8468 0.6973 0.9281 0.9048 0.8734 0.9020
FastDVDnet 7 0.06 17.5 0.7534 0.7811 0.7234 0.8738 0.7829 0.9364 0.9177 0.8890 0.9148
FastDVDnetF 7 0.06 17.5 0.7731 0.8105 0.7401 0.8879 0.8029 0.9545 0.9375 0.9108 0.9348



(a) GT (b) Bicubic (c) VSRNet (d) VSRNetF

(e) VESPCN (f) VESPCNF (g) FastDVDnet (h) FastDVDnetF

Figure 2: Visual comparisons of different methods on 4× upscaling. F means student networks trained with our STD scheme. The frame
is from Vid4-Foliage. Please zoom in for better visualization.

(a) GT (b) Bicubic (c) VSRNet (d) VSRNetF

(e) VESPCN (f) VESPCNF (g) FastDVDnet (h) FastDVDnetF

Figure 3: Visual comparisons of different methods on 4× upscaling. F means student networks trained with our STD scheme. The frame
is from Vid4-Walk. Please zoom in for better visualization.
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