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In this supplementary material, we present more results
of the proposed mechanism by: 1) evaluating the perfor-
mance on softmax classification tasks; 2) visualizing more
examples of “advertising for free”; 3) comparing with the
query-based black-box attacks.

1. Performance on Softmax Classification

We conduct additional experiments to evaluate the pro-
posed mechanism on softmax classification tasks using the
same setting of ImageNet and compare with the afore-
mentioned benchmarks [8, 10]. Since softmax returns the
argmax label as the classification result, we revise the ob-
jective of NAG slightly,

ε∗(σ) = argmin
||x′−x||∞<η

(
Er∼N (0,σ2I)

(
LCE(x′, xt)+λ||d(x′+r, x′)||1

))
(1)

Given the target label xt, the first term is the cross-entropy
loss of targeting x′ at xt. The second term is the l1 dis-
tance between the output of x′ + r and x′, that the goal is
to keep noise-injected x′ + r close to x′ so that it remains
adversarial [6]. λ is a scaling parameter to balance the two
losses.

We randomly select one from the 100 categories as the
target class (other than the original source class) and show
the transferability rates in Table 1. We add Inception v3
into the model combination because of improved accuracy
on the softmax classification task. We set λ = 50 to
weigh more on the second loss and the noise level is set
to 32. From Table 1, the average black-box transferability
is 0.93%, 1.11%, 4.19% and 4.69% for PGD, DI, DI-Mom
and NAG, i.e., both DI-Mom and NAG offer 4× targeted
transferability compared to PGD and DI. Note that DI/DI-
Mom were originally proposed and tested on softmax clas-
sification, which defeat the winners of NIPS 2017 adversar-
ial competition by a large margin. NAG is slightly better or
on par with DI-Mom in softmax.

Discussion. We notice some interesting phenomenons
during our experimentation on the hashing and classifica-
tion networks. The first one is their response to the injected

random noise: softmax classification is more robust to ran-
dom noise, such that: a) the convergence of (1) is much
faster than hashing; b) for the same level of random noise,
NAG is more effective in deep hashing than softmax (our
mechanism is comparable to DI-Mom in softmax, but with
more than 15% improvements in deep hashing). In contrast
to softmax, hashing learns similarity relations from pairwise
inputs. The difference could be investigated along the direc-
tion of attentive regions/feature structures learned by deep
hashing and softmax. We also notice that the variation of
loss curvature in deep hashing is higher than softmax during
training, which indicates that softmax may have a smaller
Lipchitiz constant overall (sensitivity of the network to per-
turbations). This may partially illustrate why random noise
is less effective on softmax classification. We also notice
that the distributions of the perturbation generated by NAG
visually retain a Gaussian distribution. Since the solutions
are mostly found among the vertices of the l∞ ball, the rest
of the additive Gaussian noise is preserved. The fundamen-
tal questions of how much random noise would help learn
a randomized smoothing classifier [9], improve black-box
transferability (compared to the competitive input diversity
methods [10]), and resolve the relations between adversarial
perturbations and random noise in different learning tasks
(softmax/metric/hashing) are worth future research efforts.

2. More Examples from “Advertising for Free”

We present more examples to advertise for free using the
proposed attack. Figs.1 and 2 visualize the two strategies.
Recall that in Strategy I, we randomly pick a fixed number
of images from the most vulnerable category and generate
the corresponding adversarial images (one of them is de-
picted with the perturbation). It is seen that the vulnerable
categories do not appear to be purely random - some of them
have obvious semantic relations, e.g., the advertisement of
“beer/soda” (third row) is closest to “lotion”, because most
lotion images contain bottle(s). This allows NAG to realize
black-box transfer attacks more easily. Similarly, the fourth
advertisement of beverage features a dog in the image and
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PGD 100.0 1.3 1.1 1.0 1.2 1.0 0.9 0.3
DI 99.9 1.3 1.2 1.1 1.6 0.5 0.5 0.4
DI-M 100.0 4.5 3.7 4.5 4.3 2.9 2.5 2.7
NAG 98.5 7.8 6.2 6.5 5.6 3.3 5.3 4.2
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PGD 1.2 100.0 1.7 1.3 1.4 0.9 0.3 0.3
DI 1.6 100.0 1.8 1.7 1.6 1.1 1.0 0.6
DI-M 6.5 99.8 6.0 7.1 5.0 4.1 2.6 4.1
NAG 5.0 99.7 7.2 8.8 6.7 4.1 3.2 4.3
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PGD 1.1 2.1 100.0 1.8 1.6 0.9 0.7 0.6
DI 1.2 2.5 100.0 2.6 2.1 0.7 1.2 0.8
DI-M 7.4 8.8 100.0 11.9 6.3 3.7 2.6 4.0
NAG 4.9 8.7 99.6 9.1 7.5 3.8 3.6 3.5
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PGD 1.5 2.3 3.6 100.0 1.9 0.9 0.9 0.5
DI 1.2 3.2 3.8 100.0 2.2 0.9 1.0 1.0
DI-M 8.0 8.9 8.0 99.9 5.7 4.9 3.1 4.9
NAG 7.3 11.9 10.4 99.8 9.9 5.3 4.9 6.1
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PGD 0.8 1.1 1.5 1.1 100.0 0.7 0.7 0.3
DI 1.5 1.5 2.0 1.3 99.9 0.3 0.6 1.0
DI-M 6.2 6.3 4.4 6.5 100.0 3.3 2.6 4.2
NAG 6.4 9.5 7.9 9.0 100.0 2.9 3.4 7.6
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PGD 0.4 0.4 0.5 0.8 0.7 100.0 0.7 0.3
DI 0.4 0.9 0.7 0.5 0.5 100.0 0.9 0.6
DI-M 3.1 3.0 1.9 3.0 2.8 100.0 1.9 2.5
NAG 3.6 4.2 2.9 2.8 2.6 99.6 3.6 2.7
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c

v3

PGD 0.5 0.3 0.5 0.4 0.4 0.5 100.0 0.3
DI 0.8 0.3 0.4 0.3 0.6 0.2 99.9 0.4
DI-M 2.9 2.6 2.1 2.5 1.9 2.0 100.0 2.0
NAG 2.1 2.2 1.9 2.0 1.8 2.0 91.4 2.2
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1 PGD 0.8 0.8 0.6 0.8 0.9 0.6 0.4 100.0
DI 0.8 0.8 1.2 0.8 0.8 0.8 0.9 99.9
DI-M 4.3 2.8 2.1 3.2 2.3 1.9 2.1 100.0
NAG 0.6 0.6 1.0 0.6 0.6 0.5 0.8 90.7

Table 1: Targeted attack success rates of softmax classification (%). The diagonal blocks indicate the white-box success
rates. On average, both DI-Mom and NAG offer 4× targeted transferability compared to PGD and DI. NAG is slightly better
than DI-Mom on softmax classification tasks.

“Welsh Springer” came as the vulnerable category (not di-
rectly retrievable within Th). It is interesting to see that the
last advertisement of handbag includes the posture of lying
on the side and “studio couch” emerges as the vulnerable
class, which also has some connections. Strategy II exploits
the top-n most vulnerable categories and selects one im-
age from each category to generate adversarial examples.
Except a few vulnerable categories with semantic relations,
the rest seem quite random, e.g., one may ask why leop-
ard/clog is in any way similar to the last advertisement of
an Android phone. In our experiment, we found that these
categories actually have lower chance to succeed.

3. Compare with Query-based Black-Box At-
tacks

An alternative to make the adversarial example trans-
ferrable is through repetitive queries, which does not need
any other information except normal access to the black-

box model [7, 4, 1]. In this section, we evaluate the success
rate of query-based black-box attacks. Most of the query-
based attacks leverage the probability score [7, 4] or the de-
cision [5, 2, 3] in softmax classification models. State-of-
the-art techniques can achieve nearly 100% success rate in
both targeted/untargeted attacks [1]. To adapt these attacks
to image retrieval, we provide an extension to transfer the
list of retrieved images back to a probability vector via cal-
culating the proportion of each category. The attacker can
adopt a pre-trained, auxiliary model to facilitate the classi-
fication of retrieved images. We implement both untargeted
and targeted attacks based on the method in [1].

We randomly select 1,000 images from the ImageNet
in our evaluation. For untargeted attack to succeed, it has
to subvert the original query results, i.e., retrieving more
images from irrelevant categories or suppressing the num-
ber of correctly matched results. Here, if the retrieved im-
ages from the original class have been reduced below 10,



Figure 1: Visualization of Strategy I: exploit the most vulnerable categories. For each advertisement image, randomly pick a
fixed number of images from the most vulnerable category and generate corresponding adversarial examples.

Networks
Untargeted Targeted

L∞ = 8 L∞ = 16 L∞ = 32 L∞ = 8 L∞ = 16 L∞ = 32

ResNet101 0.9876 0.9904 0.9986 0.001 0.001 0
ResNet152 0.9854 0.9893 0.9960 0.006 0.006 0.002
ResNext101 0.9838 0.9888 0.9963 0.007 0.006 0.005

Table 2: Success rates of query-based untargeted and targeted attacks [1]

we consider that the untargeted attack is successful (even if
the hash code does not provide a match to any of the im-
ages). For targeted attack, we randomly select the target
class and consider the attack to be successful when the ad-
versarial image retrieves more than 10 images from the tar-
geted class. We test the method on ResNet101, ResNet152
and ResNext101 models and show the success rates in Ta-
ble 2 and the number of queries in Fig. 3.

We can see that the untargeted and targeted attacks have
contrastive results. While the untargeted attacks can reach
nearly 100% success, the targeted attack is barely success-
ful in image retrieval, which is even lower than the trans-
ferred based attacks. This is due to different levels of dif-
ficulty to achieve attack success. In deep hashing, the ma-

jority of hash space consists of empty space with no hash
code corresponding to a relevant image category, so untar-
geted attacks are successful as long as the retrieval results
are diverted from the original query. Unlike in softmax
classification that query-based attacks can achieve high suc-
cess rate [1], targeted attacks in deep hashing is more diffi-
cult. The reason is due to the fact that the images are only
mapped to a small portion of hash codes. The loss func-
tion of the black-box query would update towards the di-
rection of the adversarial objective. However, once it has
stepped into the non-searchable regions of hash codes, the
loss function stops progressing because there is no retriev-
able results from the model, nor is the method able to step
out of the non-searchable region given little useful feedback



Figure 2: Visualization of Strategy II: exploit top-n vulnerable categories. For each advertisement images, pick the most n
vulnerable categories according to the hamming distance and generate an adversarial example for each category.
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Figure 3: Number of queries needed to accomplish (a) un-
targeted attack (b) targeted attack.

from the model. Thus, the success rate of targeted attacks
remains extremely low and the number of queries to accom-
plish those very few successful cases are much higher.
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