
DG-Font: Deformable Generative Networks for Unsupervised Font Generation

Yangchen Xie Xinyuan Chen* Li Sun Yue Lu

Shanghai Key Laboratory of Multidimensional Information Processing,
East China Normal University, 200241 Shanghai, China

ycxie0702@gmail.com xychen@cee.ecnu.edu.cn sunli@ee.ecnu.edu.cn ylu@cs.ecnu.edu.cn

Appendix

A. Implementation Detail

A.1 Training Strategy

We initial the weights of convolutional layers with He ini-
tialization [1], in which all biases are set to zero and the
weights of linear layers are sampled from N(0, 0.01). We
use Adam optimizer with β1 = 0.9 and β2 = 0.99 for style
encoder, and RMSprop optimizer with α = 0.99 for the
content encoder and mixer. We train the whole framework
200K iterations and the learning rate is set to 0.0001 with a
weight decay 0.0001. We train the model with a hinge ver-
sion adversarial loss [2, 4] with R1 regularization [3] using
γ = 10. In all experiments, we use the following hyper-
parameters: λimg = 0.1, λcnt = 0.1, λoffset = 0.5. All the
images are resized to 80×80 before training and testing and
the batch size is set to 32. In testing process, we use ten
reference images to compute an average style code for the
generation process. The source code will be released after
the paper is accepted.

A.2 Network Architecture

The proposed model is an encoder-decoder network. The
style encoder whose architecture is based on VGG-11 aims
to extract style information. The architecture of the content
encoder and mixer are symmetrical, which help preserve
domain-invariant information of content. The detailed ar-
chitectures of style encoder, content encoder, and mix are
shown in Table 3. The detailed information of discrimina-
tor is listed in Table 4.

B. Ablation Study

We evaluate our model by setting different hyper-
parameter values in overall objective loss (Eq. 8). All the

*Corresponding author: xychen@cee.ecnu.edu.cn

L1 loss RMSE SSIM LPIPS FID
N = 1 0.0563 0.2005 0.7549 0.850 47.99
N = 2 0.0562 0.1994 0.7580 0.0814 46.15
N = 3 0.0580 0.2039 0.7514 0.0832 47.12

Table 1. The impact of the number of FDSC module. N denotes
the number of FDSC module.

metrics are computed based on the 400 seen fonts men-
tioned in Sec 4.1.

Content reconstruction loss: We analyze the impact of
the content reconstruction loss in Table 2. We observe that
a large λcnt value leads to degradation, while the model
begins even worse without the content reconstruction loss.
It show that λcnt = 0.5 provides a good trade-off.

Image reconstruction loss: As shown in Table 2, we
find that our method performs well when λimg = 0.1. The
image reconstruction loss helps preserve domain-invariant
characteristics of the content input, but a large λimg makes
the model pay more attention to reconstruct input images
and perform poorly on generating new characters.

Offset normalization: Table 2 presents results of loss
term λoffset in deformable offset normalization (Eq. 7).
As demonstrated in the table, λoffset = 0.5 significantly
improve the generation quality.

Influence of the number of FDSC module: to evaluate
the influence of the number of FDSC module on model per-
formance, we conduct experiments that adding FDSC mod-
ule transfer different levels of information from low-level
to high level sequentially. From Table 1, we can observe
that adding an FDSC module to transfer the deformed low-
level feature significantly improve the performance of the
model. However, when the second FDSC module is added
to transfer the higher-level information, the improvement is
not obvious. This may be because feature maps input to the
second FDSC contains less spatial information. The third
FDSC even reduces performance. The detailed results are
shown in Table 1.



Figure 1. Results of user study. For each compared method, we randomly sample 100 generated images for participants’ preferences test.
The blue bar indicates the number of images that more participants prefer our results. The gray bar indicates the number of images that
more participants prefer results of the compared methods. The orange bar indicates the number of images where two methods get an equal
number of votes from 10 participants.

C. User Study

For further comparing the quality of images generated
with other methods, we conduct an experiment on a human
study by pairwise A/B tests. There are four tasks and for
each task, we randomly select 100 characters from the test
set to make 100 paired images generated by DG-Font and
another compared method. The participants are 10 people
who use Chinese characters every day. The participates are
asked to select a more similar image compared to ground-
truth from each pair within seven seconds. For each pair, we
choose the image with more votes as the judgment result.
Fig. 1 shows the participants’ preference among the four
tasks. We observe that more than 85 results of our methods
outperform the results of compared methods.

D. More Results

We select twenty-four fonts including calligraphy and
handwriting to prove the superiority of our method. These
fonts present different styles in geometric transformation,
stroke thickness, tips, and joined-up writing patterns. The
results show that the proposed method outputs high-quality
characters.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 1026–1034. IEEE Computer So-
ciety, 2015.

[2] Jae Hyun Lim and Jong Chul Ye. Geometric GAN. CoRR,
abs/1705.02894, 2017.

[3] Lars M. Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
Jennifer G. Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learning Re-
search, pages 3478–3487. PMLR, 2018.

[4] Dustin Tran, Rajesh Ranganath, and David M. Blei. Deep and
hierarchical implicit models. CoRR, abs/1702.08896, 2017.



L1 loss RMSE SSIM LPIPS FID
λcnt = 0 0.0592 0.2065 0.7441 0.0874 52.91
λcnt = 0.1 0.0562 0.1994 0.7580 0.0814 46.15
λcnt = 1 0.0591 0.2068 0.7456 0.0849 46.60
λimg = 0 0.0593 0.2065 0.7439 0.0860 59.29
λimg = 0.1 0.0562 0.1994 0.7580 0.0814 46.15
λimg = 1 0.0627 0.2155 0.7340 0.0908 44.86
λoffset = 0 0.0568 0.2007 0.7532 0.0870 52.60
λoffset = 0.5 0.0562 0.1994 0.7580 0.0814 46.15
λoffset = 1 0.0569 0.2006 0.7538 0.0838 50.23

Table 2. Impact of the hyper-parameters.

Operation Kernel size Resample Padding Feature maps Normalization Nonlinearity

Style encoder

Convolution 3 MaxPool 1 64 BN ReLU
Convolution 3 MaxPool 1 128 BN ReLU
Convolution 3 - 1 256 BN ReLU
Convolution 3 MaxPool 1 256 BN ReLU
Convolution 3 - 1 512 BN ReLU
Convolution 3 MaxPool 1 512 BN ReLU
Convolution 3 - 1 512 BN ReLU
Convolution 3 MaxPool 1 512 BN ReLU

Average pooling - - - 128 - -
FC - - - 128 - -

Content encoder

Deformable conv 7 - 3 64 IN ReLU
Deformable conv 4 stride-2 1 128 IN ReLU
Deformable conv 4 stride-2 1 256 IN ReLU

Residual block ×2 3 - 1 256 IN ReLU

Mixer

Residual block ×2 3 - 1 256 AdaIN ReLU
Convolution 5 Upsample 2 128 AdaIN ReLU
Convolution 5 Upsample 2 64 AdaIN ReLU
Convolution 7 - 3 3 - tanh

Table 3. Generative network architecture. BN, IN, AdaIN denote the batch normalization, Instance normalization, and Adaptive instance
normalization, respectively. FC means the fully connected layer

Operation Kernel size Resample Padding Feature maps Normalization Nonlinearity

Discriminator

Convolution 3 - 1 64 - -
Residual block 3 - 1 64 FRN -
Residual block 3 AvgPool 1 128 FRN -
Residual block 3 - 1 128 FRN -
Residual block 3 AvgPool 1 256 FRN -
Residual block 3 - 1 256 FRN -
Residual block 3 AvgPool 1 512 FRN -
Residual block 3 - 1 512 FRN -
Residual block 3 AvgPool 1 1024 FRN LeakyReLU

Convolution 4 - 1 1024 - LeakyRuLU
Convolution 1 AvgPool 1 400 - -

Table 4. Discriminator architecture. AvgPool denotes the averge pooling. The slope of LeakyRuLU is set to 0.2.



Figure 2. Our results of different fonts on each raw. For each case, the left ten columns show the style fonts, and the right ten columns
show the corresponding generated imitation results.


