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1. Image demosaicing and super-resolution:
additional comparison of the joint solutions

A noise-free version of the proposed JDNDMSR we
call as JDMSR. A comparison between three joint demo-
saicing and super-resolution methods is shown in Table 1.
One can see from this table that the proposed combined so-
lution JDMSR outperforms two sequential solutions. Note
that the proposed network JDNDMSR

+ is initialized by
the learned parameters of the trained JDMSR model.

Table 1: Quantitative comparison of different solutions of
joint demosaicing and super-resolution using datasets Ko-
dak and McMaster. The scale factor is 2. The best results
are shown in bold.

Pipeline McMaster Kodak
cPSNR SSIM cPSNR SSIM

DJDD[1]→VDSR[2] 31.67 0.9590 31.08 0.9404
DJDD∗ →VDSR∗ 31.37 0.9562 30.91 0.9395

JDMSR 32.32 0.9632 31.36 0.9440

2. Additional settings
Comparison on cost functions. The patch size during

training was 32 × 32, and the number of epochs is 50 with
1000 training steps and 200 validation steps. The batch size
is 16. The learning rate is 0.001 for first 10 epochs, then
falls to 0.0001 for the remaining epochs.

Comparison with State-of-the-Art. For each train-
ing epoch, the mini-batch size is 16, and the patch size is
64 × 64. For the optimization of network parameters, we
use Adam with β1 = 0.9, β2 = 0.999 and the learning rate
is initialized to 0.001. The training continues 250,000 iter-
ations.

Ablation study. In this comparison, all models are
trained for 50 epochs with 1000 training iterations per
epoch, 100 validation iterations per epoch, and 32×32 patch
size. For the pre-processing of training data (DF2K), the

scale factor is 2 and the noise level is randomly sampled
from [0, 20] out of 255. The evaluation is done by calcu-
lating cPSNR values on McM dataset with the noise level
10.

3. Analysis of cost functions

In our paper, we have used MAE to further optimize our
original JDNDMSR model. MAE as a cost function for
deep CNN has been used in many papers. See, e.g. [4],
where authors have proven that MAE loss function can give
an upper bound for regression errors to ensure a DNN ro-
bustness against additive noise, resulting in the performance
advantage of DNN-MAE over DNN-MSE.

4. Limitations and potential improvements

Although our JDNDM and JDNDMSR are trained
with images corrupted by noise level from 0 to 20, they still
are capable of processing images with higher noise level,
e.g. σ > 20. The cPSNR curves are shown in Fig. 1. How-
ever, as the noise level increases, more and more details
in the resulting images are eliminated along with the noise
(Fig. 3-4).

5. Efficiency comparison with State-of-the-Art

We evaluate efficiency of the proposed JDNDMSR
+

and TENet on the Nvidia Tesla P100 GPU. As it is shown in
Table 2, our JDNDMSR

+ model has not only lighter (has
a smaller size) but also faster (needs less time to compute)
than TENet.

Table 2: Efficiency comparison on four datasets.

Models Parameter (MB) McMaster Kodak B100 Urban100
TENet 81.3 0.70s 1.07s 0.42s 2.14s

JDNDMSR
+ 78.2 0.64s 0.87s 0.32s 1.83s
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Figure 1: cPSNR comparison JDNDM and JDNDMSR
at different noise level. The metric is averaged across Mc-
Master dataset.

Figure 2: The convergence curves of JDNDMSR with
long skip connection and transfer learning.

6. Additional ablation study

Fig. 2 shows that the additional LSC improves the perfor-
mance of the network. In addition, we exploit the transfer
learning, which transfers the well-learned parameters from
the pre-trained noise-free model JDMSR (Section 1). The
curves (yellow and red lines) in Fig. 2 prove that this kind
of easy-to-hard transfer learning strategy not only improves
the performance of network, but also supports a better start-
ing point (at least 1.5 dB higher cPSNR).

7. More qualitative results

We provide more examples to compare different joint so-
lutions of the mixture problem, image demosaicing, denois-
ing and super-resolution. As shown in Fig. 5 and Fig. 6,

our proposed JDNDMSR and JDNDMSR
+ can gener-

ate more accurate images with less color artifacts and blur
than other methods.

In Fig. 7-9, we give some examples of processed im-
ages for the qualitative comparison of the proposed method
and the state-of-the-art joint demosaicing, denoising and
super-resolution, TENet [5]. These figures demonstrate that
TENet generates color artifacts (see the last row in Fig 7
and Fig 9 and the second and third rows in Fig 8) and blur
(see the first and last rows in Fig 8 and the first two rows
in Fig 9) in resulting images. In contrast, the proposed
JDNDMSR

+ can eliminate noise and artifacts while re-
taining more accurate details and textures.

In addition to this, we show that the proposed method
outperforms state-of-the-art also for the case of the scaling
factor equal to 1, i.e. for the joint denoising and demo-
saicing problem. The processed images for the visual com-
parison between JDNDM (which is a special case of the
proposed JDNDMSR

+ for SR scale factor equal to 1) and
the state-of-the-art methods are shown in Fig. 10-11. From
these illustrations, one can see that the DJDD [1] method
will cause blur and color artifacts which appear to be more
severe by increasing a noise level. The method proposed by
Kokkinos [3] causes blur in the high frequency region (even
for noise-free data) and fails to remove a noise. Analysis
of the processed images by the proposed JDNDM and the
state-of-the-art methods, allow us to conclude that images
reconstructed by JDNDM have significantly less artifacts
compared to the results of application of the state-of-the-art
methods.
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Figure 3: Qualitative comparison JDNDM at different noise level.
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Figure 4: Qualitative comparison JDNDMSR at different noise level.
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Figure 5: Qualitative comparison between different joint solutions. Scale factor is 2. The noise level is 10. The patches of
the upper two rows are from image9 in McMaster. The patches of the last two rows are from image12 in McMaster.
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Figure 6: Qualitative comparison between different joint solutions. Scale factor is 2. The noise level is 10. The patches of
the upper two rows are from kodim05 in Kodak. The patches of the last two rows are from kodim06 in Kodak.



Ground truth Corrupted image TENet Ours

Figure 7: Qualitative comparison between the SOTA model TENet and the proposed JDNDMSR
+. Scale factor is 2. The

noise level is 0.



Ground truth Corrupted image TENet Ours

Figure 8: Qualitative comparison between the SOTA model TENet and the proposed JDNDMSR
+. Scale factor is 2. The

noise level is 10.



Ground truth Corrupted image TENet Ours

Figure 9: Qualitative comparison between the SOTA model TENet and the proposed JDNDMSR
+. Scale factor is 2. The

noise level is 20.



Ground truth DJDD Kokkinos Ours

Figure 10: Qualitative comparison between our proposed JDNDM and state-of-the-art methods, DJDD [1] and kokkinos [3].
The noise level of first two rows is 0. The noise level of last two rows is 5.
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Figure 11: Qualitative comparison between our proposed JDNDM and state-of-the-art methods, DJDD [1] and kokkinos [3].
The noise level of first two rows is 10. The noise level of last two rows is 15.


