
MobileDets: Searching for Object Detection Architectures for Mobile
Accelerators (Supplementary Material)

Yunyang Xiong ∗

University of Wisconsin-Madison
yxiong43@wisc.edu

Hanxiao Liu ∗

Google
hanxiaol@google.com

Suyog Gupta
Google

suyoggupta@google.com

Berkin Akin, Gabriel Bender, Yongzhe Wang, Pieter-Jan Kindermans, Mingxing Tan
Google

{bakin,gbender,yongzhe,pikinder,tanmingxing}@google.com

Vikas Singh
University of Wisconsin-Madison

vsingh@biostat.wisc.edu

Bo Chen
Google

bochen@google.com

This is the supplementary material for our submission.
In this document, we describe further details of the rela-
tionship between the building blocks of MobileDet search
space and the linear structure of Tucker/CP decomposition.

1. Connections with Tucker/CP decomposition
The proposed layer variants can be linked to Tucker/CP

decomposition. Fig. 1 shows the graphical structure of
an inverted bottleneck with input expansion ratio s, modulo
nonlinearities. This structure is equivalent to the sequential
structure of approximate evaluation of a regular convolution
by using CP decomposition [2]. The Tucker convolution
layer with input and output compression ratios s and e, de-
noted as Tucker layer shown in Fig. 3, has the same struc-
ture (modulo nonlinearities) as the Tucker decomposition
approximation of a regular convolution [1]. Fused inverted
bottleneck layer with an input expansion ratio s, shown in
Fig. 2, can also be considered as a variant of the Tucker
decomposition approximation.

Details of the approximation is as follows. CP-
decomposition approximates convolution using a set of se-
quential linear mappings: a 1 × 1 pointwise convolution,
two depthwise convolutions along the spatial dimensions,
and finally another pointwise convolution. Since the kernel
size of convolution is quite small, e.g. 3×3, or 5×5, the
decomposition along the spatial dimensions does not save
much computation. Without performing the decomposition
along the spatial dimensions, the sequential graphical struc-
ture is equivalent to inverted bottleneck in Fig. 1. Similarly,
a mode-2 Tucker decomposition approximation of a convo-

∗Equal contribution.

H1
W

1

C
1

H1
W

1

s
×

C
1

H2 W
2

s
×

C
1

H2 W
2

C
21× 1 conv K ×K dconv 1× 1 conv

Figure 1: Inverted bottleneck layer: 1× 1 pointwise convolution trans-
forms the input channels from C1 to s × C1 with input expansion ratio
s > 1, then K ×K depthwise convolution transforms the input channels
from s × C1 to s × C1, and the last 1 × 1 pointwise convolution trans-
forms the channels from s × C1 to C2. The highlighted C1, s,K,C2 in
IBN layer are searchable.

lution along input and output channels involves a sequence
of three operations, a 1 × 1 convolution, then a K × K
regular convolution, then another 1× 1 pointwise convolu-
tion. This sequential structure of Tucker layer is shown in
Fig. 3. Combining the first 1× 1 pointwise convolution and
the second K ×K regular convolution as one K ×K regu-
lar convolution gives the fused inverted bottleneck layer in
Fig. 2.

We therefore refer to the expansion operation as fused
convolution layer, the compression operation as Tucker
layer, and our proposed search space with a mix of both
layers and IBNs as the MobileDets search space.

1



H1
W

1

C
1

H2 W
2

s
×

C
1

H2 W
2

C
2K ×K conv 1× 1 conv

Figure 2: Fused inverted bottleneck layer: K ×K regular convolution
transforms the input channels from C1 to s×C1 with input expansion ratio
s > 1, and the last 1 × 1 pointwise convolution transforms the channels
from s × C1 to C2. The highlighted C1,K, s, C2 in the fused inverted
bottleneck layer are searchable.

H1
W

1

C
1

H1
W

1

s
×
C

1

H2 W
2e

×
C

2

H2 W
2

C
21× 1 conv K ×K conv 1× 1 conv

Figure 3: Tucker layer: 1 × 1 pointwise convolution transforms the
input channels C1 to s × C1 with input compression ratio s < 1, then
K ×K regular convolution transforms the input channels from s×C1 to
e×C2 with output compression ratio e < 1, and the last 1× 1 pointwise
convolution transforms the channels from e× C2 to C2. The highlighted
C1, s,K, e, C2 in Tucker layer are searchable.

References
[1] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi,

Lu Yang, and Dongjun Shin. Compression of deep convolu-
tional neural networks for fast and low power mobile applica-
tions. arXiv preprint arXiv:1511.06530, 2015. 1

[2] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-
eledets, and Victor Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. arXiv
preprint arXiv:1412.6553, 2014. 1

2


