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1. More examples of amplitude-only and
phase-only reconstruction

We present more examples of amplitude-only recon-
structed images, phase-only reconstructed images, as well
as their corresponding original images in Fig. 1. As we can
see, the general visual structures of different objects are pre-
served in the phase-only reconstructed images, while the
amplitude-only reconstructed images mainly contain low-
level statistics without clear semantic meanings.

2. Implementation details

2.1. Experiments on three DG benchmarks

Network details: We closely follow the implementa-
tions of [2, 16]. For Digits-DG, we use the same backbone
network as [16]. For PACS and OfficeHome, we use Ima-
geNet pre-trained ResNet18 and ResNet50 as the backbone.

Optimization details: For all the datasets, we train our
network using the nesterov-momentum SGD with a mo-
mentum of 0.9 and weight decay of 5e-4. For Digits-DG
and PACS, we train the model for 50 epochs. For Office-
Home, we train the model for 30 epochs. The initial learn-

ing rate for Digits-DG is 0.05 and decayed by 0.1 every 20
epochs. For PACS and OfficeHome, the initial learning rate
is 0.001 and decayed by 0.1 at 80% of the total epochs. The
batch size is set to 128 for Digits-DG and 16 for PACS and
OfficeHome.

Data Augmentation details: The term “augmentation”
here refers to the typical data augmentation techniques. For
Digits-DG, we only use simple augmentations composed
of random flipping and resizing. The input image size is
32 × 32. For PACS and OfficeHome, we use the stan-
dard augmentation protocol as in [2], which consists of
randomly cropping the images to retain between 80% to
100%, randomly applied horizontal flipping and randomly
color jittering with magnitude of 0.4. The input image size
is 224× 224.

Model-specific details: For all experiments, we set the
momentum m for the teacher model to 0.9995 and the tem-
perature T to 10. The weight β of the consistency loss is
set to 2 for Digits-DG and PACS, and 200 for OfficeHome.
We also use a sigmoid ramp-up [13] for β with a length of 5
epochs. The augmentation strength of AM is chosen as 1.0
for Digits-DG and PACS, and 0.2 for OfficeHome. For the
convenience of applying amplitude mixing, when an origi-

Figure 1. Examples of amplitude-only and phase-only reconstruction.



Table 1. Leave-one-domain-out results on Digits-DG.

Methods MNIST MNIST-M SVHN SYN Avg.

Jigen [2] 96.5 61.4 63.7 74.0 73.9
L2A-OT [17] 96.7 63.9 68.6 83.2 78.1

DeepAll [16] 95.8±0.3 58.8±0.5 61.7±0.5 78.6±0.6 73.7
CCSA [9] 95.2±0.2 58.2±0.6 65.5±0.2 79.1±0.8 74.5
MMD-AAE [7] 96.5±0.1 58.4±0.1 65.0±0.1 78.4±0.2 74.6
CrossGrad [11] 96.7±0.1 61.1±0.5 65.3±0.5 80.2±0.2 75.8
DDAIG [16] 96.6±0.2 64.1±0.4 68.6±0.6 81.0±0.5 77.6
FACT (ours) 97.9±0.2 65.6±0.4 72.4±0.7 90.3±0.1 81.5

Table 2. Leave-one-domain-out results on OfficeHome.
Methods Art Clipart Product Real Avg.

Jigen [2] 53.04 47.51 71.47 72.79 61.20
RSC [5] 58.42 47.90 71.63 74.54 63.12
L2A-OT [16] 60.60 50.10 74.80 77.00 65.60

DeepAll 57.88±0.20 52.72±0.50 73.50±0.30 74.80±0.10 64.72
CCSA [9] 59.90±0.30 49.90±0.40 74.10±0.20 75.70±0.20 64.90
MMD-AAE [7] 56.50±0.40 47.30±0.30 72.10±0.30 74.80±0.20 62.70
CrossGrad [11] 58.40±0.70 49.40±0.40 73.90±0.20 75.80±0.10 64.40
DDAIG [16] 59.20±0.10 52.30±0.30 74.60±0.30 76.00±0.10 65.50
Jigen (our imple.) 57.95±0.62 49.21±0.35 72.61±0.45 74.90±0.25 63.67
RSC (our imple.) 57.67±0.51 48.48±0.44 72.62±0.31 74.16±0.48 63.23
FACT ((ours)) 60.34±0.11 54.85±0.37 74.48±0.13 76.55±0.10 66.56

nal image is generated, we sample another image from the
whole dataset, and then mixing the amplitude spectrums of
these two images to produce two augmented counterparts.
We then pass these two original images as well as their aug-
mented counterparts to the model. Therefore, within a sin-
gle iteration, the number of input images is 4× batch size.

2.2. Single domain evaluations on PACS

Here we present the experimental details about the sin-
gle domain evaluations in the Discussion of main paper.
Specifically, we train ResNet18 using the original images,
phase-only reconstructed images and amplitude-only recon-
structed images, respectively, on the training splits from a
single domain, and then evaluate on the validation splits
of all domains. The phase-only reconstructed images are
generated by setting the amplitude component as a constant
of 20000 when reconstructing the images via inverse FFT.
Through this way, the amplitude information is eliminated
in the phase-only images so that the model only relies on
the phase information for classification. Similar operations
are applied to get the amplitude-only reconstructed images.
Since the distributions of phase-only and amplitude-only
images differ drastically from the original images, we train
the networks from scratch in order to remove the impacts of
ImageNet pre-training. This ensures a fair comparison be-

tween the performances of the original images, phase-only
reconstructed images and amplitude-only reconstructed im-
ages. Other basic settings are kept the same with the above
DG experiments on PACS.

3. Complete results on DG benchmarks
We present the complete results in the form of mean±std

on Digits-DG, PACS, OfficeHome in Table 1, Table 2, Ta-
ble 3, respectively. Note that unlike most previous work,
Dou et al. directly report the best accuracy on the target do-
main [3]. For fair comparison, we also report our results
under this protocol in Table 3.

4. Additional results of AlexNet
To further verify the flexibility of our framework with

different backbone networks, we experiment on PACS by
incorporating AlexNet into our FACT framework. Specif-
ically, we use the Caffe-version of ImageNet pretrained
AlexNet1. We train the network with nesterov-momentum
SGD, batch size of 32 and weight decay of 5e-4 for 50
epochs. The initial learning rate is 0.001 and decayed by
0.1 at 80% of the total epochs. We also use the standard

1https://drive.google.com/file/d/
1wUJTH1Joq2KAgrUDeKJghP1Wf7Q9w4z-/view

https://drive.google.com/file/d/1wUJTH1Joq2KAgrUDeKJghP1Wf7Q9w4z-/view
https://drive.google.com/file/d/1wUJTH1Joq2KAgrUDeKJghP1Wf7Q9w4z-/view


Table 3. Leave-one-domain-out results on PACS. †: results are reported based on the best models on test splits.

Methods Art Cartoon Photo Sketch Avg.

ResNet18

JiGen [2] 79.42 75.25 96.03 71.35 80.51
Epi-FCR [6] 82.10 77.00 93.90 73.00 81.50
MMLD [8] 81.28 77.16 96.09 72.29 81.83
InfoDrop [12] 80.27 76.54 96.11 76.38 82.33
L2A-OT [17] 83.30 78.20 96.20 73.60 82.80
RSC [5] 83.43 80.31 95.99 80.85 85.15

DeepAll 77.63±0.84 76.77±0.33 95.85±0.20 69.50±1.26 79.94
MetaReg [1] 83.70±0.19 77.20±0.31 95.50±0.24 70.30±0.28 81.70
DDAIG [16] 84.20±0.30 78.10±0.60 95.30±0.40 74.70±0.80 83.10
CSD [10] 78.90±1.10 75.80±1.00 94.10±0.20 76.70±1.20 81.40
EISNet [14] 81.89±0.88 76.44±0.31 95.93±0.06 74.33±1.37 82.15
RSC (our imple.) 80.55±0.78 78.60±0.38 94.43±0.01 76.02±1.68 82.40
FACT (ours) 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51

MASF [3]† 80.29±0.18 77.17±0.08 94.99±0.09 71.69±0.22 81.04
FACT (ours)† 85.90±0.27 79.35±0.03 96.61±0.17 80.89±0.26 85.69

ResNet50

RSC [5] 87.89 82.16 97.92 83.35 87.83

DeepAll [5] 84.94±0.66 76.98±1.13 97.64±0.10 76.75±0.41 84.08
MetaReg [1] 87.20±0.13 79.20±0.27 97.60±0.31 70.30±0.18 83.60
EISNet [14] 86.64±1.41 81.53±0.64 97.11±0.40 78.07±1.43 85.84
RSC (our imple.) 83.92±1.02 79.52±2.17 95.15±0.10 82.20±1.28 85.20
FACT (ours) 89.63±0.51 81.77±0.19 96.75±0.10 84.46±0.78 88.15

MASF [3]† 82.89±0.16 80.49±0.21 95.01±0.10 72.29±0.15 82.67
FACT (ours)† 90.89±0.19 83.65±0.12 97.78±0.05 86.17±0.14 89.62

Table 4. Leave-one-domain-out results on PACS with AlexNet as backbone. †: results are reported based on the best models on test splits.

Methods Art Cartoon Photo Sketch Avg.

DeepAll [2] 66.68 69.41 89.98 60.02 71.52
JiGen [2] 67.63 71.71 89.00 65.18 73.38
Epi-FCR [6] 64.70 72.30 86.10 65.00 72.00
MMLD [8] 69.27 72.83 88.98 66.44 74.38
RSC [5] 71.62 75.11 90.88 66.62 76.05

DeepAll 65.60±0.34 70.88±0.29 87.16±0.19 66.43±0.68 72.52
EISNet [14] 70.38±0.37 71.59±1.32 91.20±0.00 70.25±1.36 75.86
MetaVIB [4] 71.94±0.34 73.17±0.21 91.93±0.23 65.94±0.24 75.74
FACT (Ours) 75.50±0.52 71.16±0.24 89.10±0.20 71.65±0.39 76.85

MASF [3]† 70.35±0.33 72.46±0.19 90.68±0.12 67.33±0.12 75.21
FACT (Ours)† 76.46±0.28 72.57±0.39 90.24±0.26 73.56±0.08 78.21

augmentation protocol as in [2], which consists of random
resized cropping, horizontal flipping and color jittering. We
set the momentum m for the teacher model to 0.9995 and
the temperature T to 10. The weight β of the consistency
loss is set to 2. We also use a sigmoid ramp-up [13] for β
with a length of 5 epochs. The augmentation strength of

AM is chosen as 1.0.
The results are presented in Table 4, which have shown

that FACT with AlexNet as backbone is still able to outper-
form the state-of-the-arts, by exceeding both EISNet [14]
and MetaVIB [4] by around 1% in terms of the average per-
formance. The largest performance gain of FACT comes



from the generalization tasks on art and sketch domain,
both of which bear a large distribution shift from the pre-
training domain of ImageNet. This demonstrates the ef-
fectiveness of our method when generalizing to unknown
out-of-domains.

5. Variants of Fourier data augmentation
The form of Fourier-based data augmentation is not re-

stricted to amplitude swap (AS) or amplitude mix (AM)
mentioned in the paper. Here we further propose three more
variants of Fourier-based data augmentation:

• Amplitude CutMix (AC): We define a pixel-level
mixing strategy based on the CutMix [15]. Specifi-
cally, we firstly sample a binary mask s from Bernoulli
distribution in the shape of the input image. We then
linearly mix the amplitude components of two images
to generate the augmented images:

Â(xki ) = (1− s) · A(xki ) + s · A(xk
′

i′ ) (1)

where [·] denotes element-wise prodution. Note that
AS can be seen as a special case of AC, where the en-
tries of s in the center area are fixed as 1 and 0 for the
remaining area.

• Amplitude Jittering (AJ): We can directly perturb
the amplitude information in an image with random
noises. Suppose a Gaussian noise n ∼ N (0, σ), we
can generate the perturbed amplitude spectrum as:

Â(xki ) = (1 + n) · A(xki ) (2)

where the strength of noise jittering is controlled by σ.

• Amplitude Elimination (AE): The above Fourier-
based data augmentation are all based on amplitude
perturbation. Nevertheless, we can directly use the
phase-only reconstruction as augmented versions of
the original images. In this way, the amplitude infor-
mation in original images is completely eliminated.

We report the performances of all different augmenta-
tions incorporated in the baseline DeepAll and our FACT
framework in Table 5 and 6 respectively. Among all the
augmentation types, AM performs best in terms of the av-
erage performance. AJ with a larger σ (0.5 ∼ 0.7) can also
reach a relatively good performance. Interestingly, when
incorporated in FACT, the performance of AJ shows a clear
trade-off on different domains as the parameter σ changes.
With a relatively smaller σ (0.1 ∼ 0.3), AJ performs better
when generalizing to the cartoon and photo domain, while
with a relatively larger σ (0.5 ∼ 0.7), AJ is better at gen-
eralizing to the art and sketch domain. Further increasing
the value of σ (e.g. σ = 0.9) will degrade the performance,

mainly due to the augmentation strategy is too aggressive.
Nevertheless, the AM strategy shows a better trade-off on
all the four cases, thus is a more general choice than AJ.

On the other hand, AC gains a moderate performance
among all the perturbation-based variants, which means a
simple linear interpolation strategy of AM is a better choice.
However, the AE strategy which directly eliminates the am-
plitude information performs relatively worse than all the
other augmentation variants. This may attribute to the large
distribution discrepancy of the phase-only reconstructed im-
ages compared with the original image domain, which may
increase the difficulty of model learning. Another issue is
that the phase-only images also follows a different distribu-
tion with the pre-trained dataset ImageNet, which means the
model may benefit less from ImageNet pre-training. Fur-
thermore, as we mentioned in the Discussion of main pa-
per, desirable performances on domains like photo may also
require the presence of amplitude information, as these do-
mains contain rich low-level details, therefore totally elimi-
nating amplitude information and overly highlighting phase
information may not be a good choice.

All the above augmentation types are just part of the
instantiations of Fourier-based data augmentation. In the
future, other more effective instantiations of Fourier-based
data augmentation may be proposed. Composition of dif-
ferent augmentation operations is also a topic to be studied.

6. Sensitivity to different hyperparameters

In this section we carry out detailed ablation studies
about the sensitivity to different hyperparameters related to
our method. If not specifically mentioned, all the experi-
ments below are conducted based on the ResNet18 back-
bone on PACS. When investigating the sensitivity to a spe-
cific hyperparameter, other hyperparameters are fixed to
their default values, i.e., m = 0.9995, T = 10, (η, β) =
(1.0, 2) for PACS and (η, β) = (0.2, 200) for OfficeHome.

6.1. Sensitivity to the momentum m

The results are shown in Table 7. Basically, a larger
momentum value is expected to enhance the effect of the
teacher model, thus induce a better performance. There-
fore, in all the remaining experiments, we set the momen-
tum value m to 0.9995.

6.2. Sensitivity to the temperature T

The results are shown in Table 8. FACT is not sensi-
tive to the change of the temperature value. Generally, a
temperature T > 1 would lead a good performance. More
specifically, a relatively smaller value of T (e.g. T = 1 ∼ 5)
would result in a better performance on the sketch domain,
but at the sacrifice of the performances on other target do-
mains. While a relatively larger value of T (e.g. T = 10)



Table 5. Leave-one-domain-out results on PACS with different variants of Fourier-based data augmentation. The backbone network is
ResNet18. The performances are reported from DeepAll trained with the augmented images.

Augmentation Art Cartoon Photo Sketch Avg.

AS-partial 82.00±0.13 76.19±0.15 93.89±0.18 77.27±1.18 82.34
AS-full 83.50±0.73 76.07±0.30 94.49±0.50 77.13±2.19 82.80

AC 82.63±0.50 77.15±0.48 94.94±0.03 75.01±0.70 82.43

AJ (σ = 0.1) 80.96±0.97 76.20±0.59 94.55±0.36 76.61±0.13 82.08
AJ (σ = 0.3) 81.18±0.22 77.71±0.91 95.22±0.26 79.10±0.04 83.30
AJ (σ = 0.5) 81.62±0.65 77.34±0.67 94.49±0.40 79.24±1.92 83.17
AJ (σ = 0.7) 80.71±0.28 77.72±0.53 94.96±0.32 80.22±0.49 83.40
AJ (σ = 0.9) 80.50±0.66 76.58±1.07 94.01±0.21 78.12±1.30 82.30

AE 80.08±0.47 76.12±0.81 93.57±0.45 78.50±2.26 82.07

AM 83.90±0.50 76.95±0.45 95.55±0.12 77.36±0.71 83.44

Table 6. Leave-one-domain-out results on PACS with different variants of Fourier-based data augmentation. The backbone network is
ResNet18. The performances are reported from FACT trained with the augmented images.

Augmentation Art Cartoon Photo Sketch Avg.

AS-partial 81.61±0.06 76.95±0.14 93.83±0.61 78.30±0.80 82.67
AS-full 83.46±0.28 77.37±0.86 94.10±0.34 78.63±0.61 83.39

AC 83.32±0.79 77.79±0.38 94.70±0.14 79.24±1.04 83.76

AJ (σ = 0.1) 80.66±0.49 78.45±0.99 95.45±0.11 77.59±0.60 83.04
AJ (σ = 0.3) 82.62±0.68 77.94±0.82 95.24±0.27 78.74±0.63 83.64
AJ (σ = 0.5) 82.47±0.85 77.70±0.64 95.12±0.43 80.83±0.54 84.03
AJ (σ = 0.7) 83.09±0.12 77.22±0.88 94.97±0.13 80.80±1.16 84.02
AJ (σ = 0.9) 82.29±0.30 77.23±0.87 94.54±0.34 81.16±0.35 83.80

AE 81.43±0.42 76.17±0.22 93.78±0.47 79.57±0.77 82.74

AM 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51

Table 7. Sensitivity to the momentum m. Results are reported based on the ResNet18 backbone on PACS.

Momentum Art Cartoon Photo Sketch Avg.

m = 0.9 84.41±0.65 76.36±0.84 94.64±0.16 78.99±1.11 83.60
m = 0.99 84.07±1.05 77.22±0.88 94.61±0.28 79.48±0.98 83.84
m = 0.999 84.61±0.06 77.84±0.35 95.14±0.35 79.05±0.71 84.16
m = 0.9995 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51

can reach a better trade-off between all the four leave-one-
domain-out cases. Continuously increase the value of T
(e.g. T = 20) would degrades the average performance
again, mainly because the discriminality in predictions is
over-smoothed, thus confusing the model in decision mak-
ing. A similar trend can also be found on other datasets.
Therefore, for convenience, we set the temperature T = 10
for all the experiments.

6.3. Sensitivity to the perturbation strength η

Recall that the mix coefficient λ in the AM strategy are
sample from a uniform distribution U(0, η), thus the value

of η controls the strength of the amplitude perturbation. We
present the impact of different values of η on PACS and
OfficeHome in Table 9. Note that when η = 0, no Fourier-
based data augmentation is applied, and the difference be-
tween the original image and its augmented counterpart2

is only induced by the randomness in basic augmentations
(i.e., flipping, cropping, and color jittering).

As we can see, the value of η has different effects on
different datasets. On PACS, a larger η would result in a
better performance, and the best performance is achieved at

2More exactly, “the original image and its augmented counterpart” are
two differently augmented versions of the same image.



Table 8. Sensitivity to temperature T . Results are reported based on the ResNet18 backbone on PACS.

Temperature Art Cartoon Photo Sketch Avg.

T = 1 84.06±0.02 76.52±0.28 93.47±0.12 81.04±0.64 83.77
T = 2 84.23±0.52 78.11±0.12 94.05±0.29 80.20±0.92 84.15
T = 5 84.46±0.29 77.87±0.37 95.11±0.25 80.49±0.14 84.48
T = 10 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51
T = 20 84.91±0.11 77.96±0.41 94.88±0.21 79.16±0.52 84.23

Table 9. Sensitivity to the perturbation strength η. Results are reported based on the ResNet18 backbone. For PACS, the consistency loss
weight β is fixed as 2, and for OfficeHome, β is fixed as 200.

PACS Art Cartoon Photo Sketch Avg.

(η = 0.0, β = 2) 82.68±0.44 78.06±0.39 95.35±0.44 74.76±0.67 82.71
(η = 0.2, β = 2) 82.29±0.51 77.73±0.68 96.33±0.25 75.10±1.33 82.86
(η = 0.4, β = 2) 83.51±0.38 77.68±0.46 96.23±0.08 76.48±0.72 83.48
(η = 0.6, β = 2) 83.96±0.51 78.57±0.16 95.95±0.11 78.06±0.85 84.14
(η = 0.8, β = 2) 84.18±0.15 78.33±0.41 95.72±0.23 78.16±0.10 84.10
(η = 1.0, β = 2) 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51

OfficeHome Art Clipart Product Real Avg.

(η = 0.0, β = 200) 59.18±0.40 54.03±0.61 73.91±0.22 76.10±0.10 65.81
(η = 0.2, β = 200) 60.34±0.11 54.85±0.37 74.48±0.13 76.55±0.10 66.56
(η = 0.4, β = 200) 59.65±0.34 55.09±0.21 73.87±0.32 76.19±0.18 66.20
(η = 0.6, β = 200) 58.51±0.38 55.10±0.13 73.22±0.23 75.48±0.25 65.58
(η = 0.8, β = 200) 57.13±0.63 55.03±0.58 72.93±0.15 74.68±0.13 64.94
(η = 1.0, β = 200) 57.86±0.14 53.25±0.06 72.70±0.31 74.42±0.26 64.56

η = 1.0. While on OfficeHome, a smaller η does better
and the best performance is achieved at η = 0.2. The dif-
ferent behavior of η on different datasets can be attribute to
the different extent of domain discrepancy. On PACS, the
discrepancy between the four domains is much larger than
that on OfficeHome. If we treat the Fourier-based augmen-
tation as a kind of regularization, then a larger η may induce
an overly-regularized model for OfficeHome, considering a
vanilla baseline can already perform well due to the small
domain discrepancy. Therefore, a more aggressive augmen-
tation strategy with a larger η will do better on PACS, while
a more conservative augmentation strategy with a smaller η
is more suitable for OfficeHome.

6.4. Sensitivity to the consistency loss weight β

The results of the impact of different values of the con-
sistency loss weight β are shown in Table 10. Note that
when β = 0, the model is trained without any consistency
constraint. The average performance of FACT on PACS is
quite stable when β is in the range of 1.0 ∼ 20, and the
best performance is achieved at β = 2.0. A further smaller
or larger value of β will either induce a too weak or too
strong constraint. On the other hand, FACT performs better
with a larger value of β on OfficeHome. The performance
is stable when β is within the range 20 ∼ 500, and the best

performance is achieved at β = 200 on OfficeHome.
An interesting finding is that there seems to be a trade-

off between the value of η and β. A larger η together with
a smaller β is better for PACS, while a smaller η together
with a larger β is better for OfficeHome. It seems that η and
β will compensate for each other in terms of regularization
power. When equipped with a large η, using a large β may
be too aggressive for the model to learn. On the other hand,
when equipped with a small η, still using a small β may not
fully develop the power of consistency constraint.

In conclusion, for datasets with a large domain dis-
crepancy (e.g. PACS, Digits-DG), a larger value of η (e.g.
η = 1.0) together with a smaller value of β (e.g. β = 2.0) is
desired, while for datasets with a small domain discrepancy
(e.g. OfficeHome), we suggest a smaller value of η (e.g.
η = 0.2) together with a larger value of β (e.g. β = 200).

7. Sampling strategies for amplitude mixing

When implementing the amplitude mixing (AM) for a
specific image, the amplitude spectrum from another im-
age is sampled randomly from the whole dataset. Neverthe-
less, we can restrict the sampling image to be taken from the
same or different domain. In other words, we can develop
an intra-domain AM operation or an inter-domain AM oper-
ation. To study the impact of different sampling strategies,



Table 10. Sensitivity to the consistency loss weight β. Results are reported based on the ResNet18 backbone. For PACS, the perturbation
strength η is fixed as 1.0, and for OfficeHome, η is fixed as 0.2.

PACS Art Cartoon Photo Sketch Avg.

(η = 1.0, β = 0.0) 83.90±0.50 76.95±0.45 95.55±0.12 77.36±0.71 83.44
(η = 1.0, β = 0.1) 83.70±0.48 78.54±0.91 94.85±0.34 77.03±0.95 83.53
(η = 1.0, β = 1.0) 84.42±0.30 78.30±0.28 95.33±0.30 79.10±0.69 84.29
(η = 1.0, β = 2.0) 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51
(η = 1.0, β = 5.0) 84.50±1.00 78.13±0.45 94.81±0.22 79.77±0.33 84.30
(η = 1.0, β = 10) 84.26±0.07 78.20±0.38 94.77±0.25 80.02±1.23 84.31
(η = 1.0, β = 20) 84.54±0.49 77.61±0.48 94.62±0.27 80.07±0.72 84.21
(η = 1.0, β = 200) 82.78±0.47 77.13±0.47 92.81±0.12 80.23±0.70 83.24

OfficeHome Art Clipart Product Real Avg.

(η = 0.2, β = 0.0) 59.22±0.14 52.97±0.42 73.22±0.06 75.36±0.14 65.19
(η = 0.2, β = 1.0) 59.38±0.67 53.22±0.23 73.25±0.19 75.28±0.05 65.28
(η = 0.2, β = 2.0) 59.12±0.28 52.77±0.31 73.66±0.48 75.44±0.30 65.25
(η = 0.2, β = 5.0) 59.52±0.43 52.97±0.00 73.52±0.14 75.36±0.12 65.34
(η = 0.2, β = 10) 59.30±0.64 53.13±0.58 73.74±0.39 75.74±0.42 65.48
(η = 0.2, β = 20) 59.65±0.80 53.46±0.42 73.63±0.22 75.68±0.37 65.60
(η = 0.2, β = 50) 59.87±0.21 54.10±0.42 74.23±0.19 75.82±0.49 66.00
(η = 0.2, β = 100) 60.23±0.43 54.15±0.36 74.41±0.25 76.20±0.41 66.25
(η = 0.2, β = 200) 60.34±0.11 54.85±0.37 74.48±0.13 76.55±0.10 66.56
(η = 0.2, β = 500) 60.39±0.61 53.63±0.75 74.18±0.19 76.42±0.24 66.16

Table 11. Impact of different sampling strategies for amplitude mixing. Results are reported based on the ResNet18 backbone on PACS.

PACS Art Cartoon Photo Sketch Avg.

Intra-domain 83.99±0.10 78.84±0.38 95.39±0.12 79.01±0.68 84.31
Inter-domain 85.09±0.20 77.43±0.49 94.71±0.17 79.46±0.92 84.17

Random 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51

we carry out experiments by using only intra-domain or
inter-domain AM operations. The results are shown in Ta-
ble 11. As we can see, FACT is not sensitive to the sampling
strategies. Whether intra-domain or inter-domain sampling
strategy brings a good performance, and using a fully ran-
dom strategy works best, perhaps because more augmented
variants are included through fully random sampling.
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