
Supplemental Material for

Inferring CAD Modeling Sequences Using Zone Graphs

1. Simplification by face loop

Please see Figure 1 for a demonstration of finding face
loops in the target geometry for zone graph simplification.

2. Search

Please see Algorithm 1 and Algorithm 2 and for extru-
sion formulation and search details.

Algorithm 1 Extrusion Formulation
1: Input

2: Input zone graph zg

3: Output

4: Proposed extrusion list exts
5: procedure getExtrusions(zg)
6: exts []
7: for (sp, ep) in plane pairs do . iterating parallel

plane pairs
8: v sp.nor ⇤ dissp!ep . compute extrusion

vector
9: cgs getGroups(sp.faces, sp.cur graph)

10: tgs getGroups(sp.faces, sp.tgt graph)
11: igs getGroups(sp.faces, sp.idle graph)
12: cyds genCylinders(cgs, tgs, igs, v) .

grouping faces into sketches and generating extrusions
13: for cyd in cyds do

14: e = Extrusion()
15: e.zones findZones(cyd, zg) . finding

and labeling inside zones
16: e.bool boolType(e, zg)
17: exts.add(e)
18: end for

19: end for

20: return exts
21: end procedure

3. Network Architecture

Please see Table 1, 2, 3 and 4 for network architecture
details.

Algorithm 2 Search
1: Input

2: Input zone graph zg

3: Output

4: Reconstruction sequence seq

5: procedure search(zg, seq = [])
6: if is target(zg) then

7: return True
8: end if

9: if terminate() then

10: return False
11: end if

12: exts = getExtrusions(zg)
13: exts ranked = rankExtrusions(exts)
14: for e in exts ranked do

15: zg = zg.update(e)
16: ret search(zg, seq) . recursive search
17: if ret = True then

18: seq.add(e)
19: return True
20: end if

21: end for

22: end procedure

Please see Figures 6, 7 for some ablation experiments
with different model architectures.

4. Fusion 360 Gallery Success/Fail Case Sum-

mary

Tables 5, 6, 7 detail the percentage of Fusion 360
Gallery shapes that our method can/cannot reconstruct,
breaking down successes and failures into subcategories.
Overall, our method can reconstruct 80% of the shapes in
the dataset.

We also show the effect of different strategies for con-
structing extrusion proposals. As described in Section 5.1
of the main paper, we consider only individual connected
components or the union of all connected components in a
face group as candidate extrusions. Here, we introduce a
generalization of this scheme based on the idea of proposal

Figure 1: Zone graph simplification by finding face loops. Column 1: Target shapes; Column 2: Extrusion directions marked
with red arrows; Column 3: Found face loops, highlighted in red; Column 4: Face extension directions determined by the
extrusion directions associated with their face loops. Note that when multiple extrusion directions are found for a face, it will
be extended in all found directions.

Figure 2: Comparing how different methods rank the
ground truth extrusions used in modeling sequences from
the Fusion 360 Gallery dataset without zone graph simplifi-
cation.

Figure 3: Reconstruction accuracy of the outputs of inferred
programs vs. the time used to infer them. Search bandwidth
= 1.

Figure 4: Reconstruction accuracy of the outputs of inferred
programs vs. the time used to infer them. Search bandwidth
= 5.

Figure 5: Reconstruction accuracy of the outputs of inferred
programs vs. the time used to infer them. Search bandwidth
= 10.

levels. For a proposal level of k, within each face group, all
subsets with size 1, 2 ... k and subsets with size N-k, N-k+1
... N will be used as candidate extrusions (the scheme pre-

Figure 6: Comparing how different message passing round
in GCN affects the average relative extrusion ranking.

Figure 7: Comparing how geometry information (with and
without point cloud) in the GCN affects the average relative
extrusion ranking.

PointNet

Conv1d (10, 64, 1)
Batchnorm1d

LeakyRelu

Conv1d (64, 128, 1)
Batchnorm1d

LeakyRelu

Conv1d (128, 128, 1)
MaxPool

FC(128⇥ 128)
Batchnorm1d

LeakyRelu

FC(128⇥ 128)

Table 1: Detailed architecture of the PointNet we used in
the project

Msg

FC(128⇥ 128)
Batchnorm1d

LeakyRelu

FC(128⇥ 128)
Batchnorm1d

LeakyRelu

FC(128⇥ 128)

Table 2: Detailed architecture of the Message Passing Lay-
ers we used in the project

sented in Section 5.1 of the main paper uses k = 1). Larger
k leads to more potential extrusions, which increases the
percentage of the ground-truth modeling sequences from

GCN

Msg

Msg

Msg

MaxPool

Table 3: Detailed architecture of the Graph Convolutional
Network we used in the project

MLP

FC(128⇥ 128)
Batchnorm1d

LeakyRelu

FC(128⇥ 128)
Batchnorm1d

LeakyRelu

FC(128⇥ 2)
Softmax

Table 4: Detailed architecture of the Multi-Layer Percep-
tron Network we used in the project

% of data Description

80% Can reconstruct target

60% with GT sequence
8% with different sequence (GT not captured by our proposals)

12% with different sequence (GT overshadowed & unrecoverable)

20% Cannot reconstruct target

16% Insufficiently complete zone graph / GFA error
2% Unsupported operations (e.g. tapered extrude, revolve)
2% Crash/Hang/Timeout

Table 5: Percentage of Fusion360 shapes our method(With
Zone Graph simplification, Proposal level = 1) can/cannot
reconstruct (and why)

the dataset which can be covered, at the cost of a larger
search space (and therefore more computation time). As
show in Tables 5 and 6, by increasing extrusion proposal
level k from 1 to 3, more ground truth extrusion sequences
(from 60% to 63%) are captured by our proposals.

5. Qualitative Results

5.1. Ours vs. random and heuristics

Please see Figure 9 and 10 for additional examples of the
qualitative comparison of the output of our model’s inferred
programs (Network) vs. those of Random and Heuristics.

5.2. Ours vs. InverseCSG

Please see Figure 11, 12 and 13 for examples of the qual-
itative comparison of the output of our model’s inferred pro-

% of data Description

80% Can reconstruct target

63% with GT sequence
5% with different sequence (GT not captured by our proposals)

12% with different sequence (GT overshadowed & unrecoverable)

20% Cannot reconstruct target

16% Insufficiently complete zone graph / GFA error
2% Unsupported operations (e.g. tapered extrude, revolve)
2% Crash/Hang/Timeout

Table 6: Percentage of Fusion 360 Gallery shapes our
method (with zone graph simplification, proposal level =
3) can/cannot reconstruct (and why)

% of data Description

82% Can reconstruct target

62% with GT sequence
8% with different sequence (GT not captured by our proposals)

12% with different sequence (GT overshadowed & unrecoverable)

18% Cannot reconstruct target

14% Insufficiently complete zone graph / GFA error
2% Unsupported operations (e.g. tapered extrude, revolve)
2% Crash/Hang/Timeout

Table 7: Percentage of Fusion 360 Gallery shapes our
method (without zone graph simplification, proposal level
= 1) can/cannot reconstruct (and why)

grams vs. those of InverseCSG. See Figure 14 for examples
of the reconstruction results of our model’s reconstruction
vs. those of InverseCSG.

Figure 8, top compares the reconstruction error of our in-
ferred programs to those of InverseCSG and Figure 8, bot-
tom compares the search time of each method. Reconstruc-
tion error is calculated using 1-IoU. The search time for
InverseCSG is taken from their paper and the InverseCSG
error rate is calculated using the reconstructed models re-
leased by the InverseCSG authors.

Figure 8: Per model comparison between InverseCSG and our method using heuristic (Ours Heur) or network guided (Ours
Net) search. Results are show for 33 of the 50 models in the InverseCSG test set. Models IDs with an * contain operations
other than sketch + extrude. Top: Reconstruction error computed using IoU. We use the reconstructed models released by the
InverseCSG authors to evaluate. Bottom: Search time in seconds. To compare we use the official times from the InverseCSG
paper.

Target

Random

Ours Heur

Ours Net

Figure 9: Qualitative comparison of the output of our model’s inferred programs (Ours Net) vs. those of Random and Ours
Heur. Green: addition, Red: subtraction, Grey: current. (Case 1)

Target

Random

Ours Heur

Ours Net

Figure 10: Qualitative comparison of the output of our model’s inferred programs (Ours Net) vs. those of Random and Ours
Heur. Green: addition, Red: subtraction, Grey: current. (Case 2)

Target

InverseCSG

Ours Net

Figure 11: Qualitative comparison of the output of our model’s inferred programs (Ours Net) vs. InverseCSG. Green:
addition, Red: subtraction, Blue: intersection, Grey: current. (Case 1)

Target

InverseCSG

Figure 12: Qualitative comparison of the output of our model’s inferred programs (Ours Net) vs. InverseCSG. Green:
addition, Red: subtraction, Blue: intersection, Grey: current. (Case 2, Part 1)

Ours Net

Figure 12: Qualitative comparison of the output of our model’s inferred programs (Ours Net) vs. InverseCSG. Green:
addition, Red: subtraction, Blue: intersection, Grey: current. (Case 2, Part 2)

Target

InverseCSG

Ours Net

Figure 13: Qualitative comparison of the output of our model’s inferred programs (Ours Net) vs. InverseCSG. Green:
addition, Red: subtraction, Blue: intersection, Grey: current. (Case 3)

Target InverseCSG Ours Heur Target InverseCSG Ours Heur

Figure 14: Reconstruction result comparison of InverseCSG vs Ours.

