
Supplementary Document
Linear Semantics in Generative Adversarial Networks

A. Definition of IoU.
Intersection-over-Union (IoU) is a widely used metric

in semantic segmentation literature. A segmentation of a
category is represented as a set of pixels among all pixels that
belong to this category. Suppose we have a segmentation A
and B, their IoU is IoU(A,B) = |A\B|

|A[B| . Taking the average
across a set of segmentations A = {Ai} and B = {Bi}, we
get the average IoU on this dataset:

IoU(A,B) = 1

N

X

Ai[Bi 6=;

IoU(Ai, Bi) (4)

IoU evaluates how well the segmentation is for a par-
ticular category. Mean IoU (mIoU) evaluates the overall
performance of multi-class segmentation. It is calculated as
the mean of IoUs over all categories.

B. Proof of commutative property
Now we are going to prove that u"(Ti ·xi) = Ti ·u"(xi).
Suppose that a pixel p that we want to interpolate lies

in the rectangle of four pixels (x11, x12, x21, x22) and its
relative position is described by (↵,�) as distance ratio to
the edges of the rectangle. The interpolated value is

u"p(x11, x12, x21, x22,↵,�)

=(1� �)[(1� ↵)x11 + ↵x12]

+ �[(1� ↵)x21 + ↵x22]

(5)

When we do convolution then upsample, we get the fol-
lowing result

u"p(Tix11,Tix12,Tix21,Tix22,↵,�)

=(1� �)[(1� ↵)Tix11 + ↵Tix12]

+ �[(1� ↵)Tix21 + ↵Tix22]

=Ti(1� �)[(1� ↵)x11 + ↵x12]

+Ti�[(1� ↵)x21 + ↵x22]

=Tiu
"
p(x11, x12, x21, x22,↵,�)

(6)

which is exactly upsampling then convoluting.

C. Nonlinear semantic extractors
The architectures of NSEs are shown in Fig. 7. NSE-1

is a direction generalization from LSE. Instead of extracting

!!"#

"

!#
!$ …

#
(a) NSE-1

2x …! !

"! "" …

2x

#

"#$!

(b) NSE-2
Figure 7. The architecture of NSEs. The thick blue arrow refers to
3⇥ 3 convolution with stride 1. “2x” refers to nearest upsampling
with factor 2.

semantics from each layer linearly, NSE-1 extract semantics
with 3 nonlinear convolution layers from each layer. The
results from each layer are upsampled and summed up the
same as LSE. The architecture of NSE-2 is inspired by DC-
GAN, where the resolution gradually increases. The output
from the last layer of NSE-2 is upsampled and summed with
embedding extracted from GAN’s feature maps.

D. Experiment details
Pretrained networks For segmentation on facial images,
we train a UNet [29] on CelebAMask-HQ [24] dataset to per-
form semantic segmentation. The training script is adapted
from the project repo 3 of MaskGAN [24]. Our UNet follows
standard UNet architecture and takes 512⇥ 512 images as
input. It is trained using Adam optimizer [23] for 40 epochs
(about 76k iterations), with learning rate 3⇥10�4, �1 = 0.9,
�2 = 0.999 and batch size 16.

The CelebAMask-HQ dataset contains 30k human-
labeled face-segmentation pairs. The face images are aligned
to the center and have 1024⇥1024 resolution. The semantic
labeling’s resolution is 512⇥ 512, consisting of 19 semantic
categories. However, there are duplicate semantic concepts
like “right ear” and “left ear”, “right eye” and “left eye”,
“right brow” and “left brow”. In those pairs, as both cat-
egories differ only in spatial location, we unify them into
“ear”, “eye”, and “brow”. Besides, only 50 instances are la-
beled with “necklace”, thus we remove it by merging “neck-
lace” into “neck”. As a result, we get 15 semantic categories
listed in category results Table 6.

For segmentation on GANs trained on LSUN’s bed-
room and church datasets, we use the DeepLabV3 [8] with

3https://github.com/switchablenorms/CelebAMask-HQ

1

Figure 8. Training evolution of mIoU of all the semantic extractors on GANs.

ResNeSt [39] backbone trained on ADE20k dataset [42].
Model parameters are obtained from here4. However, the
DeepLabV3 predicts in total 150 categories, where most are
not present in generated images, because GANs are train on
LSUN datasets rather than the ADE20k dataset. We apply a
category selection process (detailed in Appx. E) to remove
irrelevant semantic categories.

All the pretrained GAN models are adapted from Gen-
Force5. The image resolution of GANs trained on face
datasets are 1024⇥ 1024, and the rest are 256⇥ 256.

Training For fully supervised training, we sample 51,200
images from the GAN and record their feature maps. These
images are then semantically segmented with an off-the-
shelf segmenter in the corresponding data domain. The
semantic masks and feature maps are then used to train
the transformation matrix Ti for every GAN layer. To be
specific, the total matrix T (defined in (2)) for StyleGAN2-
FFHQ are of size 15⇥ 5568. For StyleGAN2-Bedroom, T
is shaped as 16⇥ 5376.

Ti are optimized with Adam [23] with �1 = 0.9, �2 =
0.999 and initial learning rate 10�3. The training takes 50
epochs in total, where each epoch consists of 1,024 samples.
The learning rate is reduced with a factor of 10 at epoch 20.

4https://github.com/zhanghang1989/PyTorch-Encoding
5https://github.com/genforce/genforce

For the first two epochs, the batch size is 1. For the next 16
epochs (3 to 19), the batch size is set to 4. For epoch 20 to
50, the batch size is 64. The total optimization iterations are
1024⇥ 2 + 1024

4 ⇥ 16 + 1024
64 ⇥ 32 = 6, 656. LSE, NSE-1,

and NSE-2 are trained in the same settings.
We record the mIoU of training samples, and show the

evolution of training mIoU in Fig. 8. All the semantic ex-
tractors converge during the training.

For the few-shot training of LSEs, we also sample the
latent space and segment the images. The difference is that
only a few annotations are made available to the LSE. We
experimented with 1, 4, 8, 16 samples. The resultant models
are named as the one-shot, 4-shot, 8-shot and 16-shot LSEs,
respectively. For the one-shot LSE, the training takes 2000
iterations with batch size 1. For 4, 8, and 16 samples, the
training uses batch sizes 4, 8, and 16 and iteration numbers
2000, 1000, and 500, respectively. For PGGAN, each batch
is exactly the same. For StyleGAN and StyleGAN2, the
layer noises are re-sampled in each batch. The optimizer
setting is the same as in full supervision.

Evaluation Conventionally, semantic segmentation meth-
ods are evaluated on real image-segmentation datasets. How-
ever, our semantic extractors cannot take real images as
input. One may invert real images in GAN’s representation,
but the inversion is another challenging problem, thus we

2

Generator PGGAN StyleGAN StyleGAN2
Dataset Bedroom Church Bedroom Church Bedroom Church

LSE 32.4 (-4.8) 49.4 (-2.4) 39.8 (-8.0) 34.8 (-7.0) 54.3 (-4.2) 36.8 (-3.7)
NSE-1 34.1 50.6 43.2 37.4 56.6 38.2
NSE-2 28.9 (-15.1) 45.1 (-10.8) 39.5 (-8.7) 33.3 (-11.0) 51.9 (-8.4) 34.5 (-9.8)

Results adaped from Table 1.
LSE 33.2 (-3.2) 51.3 (-3.2) 39.9 (-7.8) 35.4 (-6.3) 53.9 (-3.4) 37.7 (-2.6)

NSE-1 34.3 53.0 43.3 37.8 55.8 38.7
NSE-2 30.7 (-10.5) 49.5 (-6.6) 38.9 (-10.2) 34.0 (-10.1) 52.1 (-6.8) 35.3 (-8.8)

Table 4. The evaluation of LSE, NSE-1, and NSE-2 trained on the full list of ADE20K 150 classes. The mIoU(%) is calculated on the final
selected categories, which is the same as the the categories used in the paper. The results of models re-trained on the selected categories are
also shown in the last three rows for reference.

do not consider this approach. As a result, the evaluation
cannot be conducted on the common annotated dataset. Ide-
ally, we should annotate synthetic images manually, but the
cost would then be prohibitive. Therefore, we choose to
use the prediction from the off-the-shelf segmenter as the
ground-truth for evaluation.

We sample and segment another 10,000 images different
from those used in training. Every time GAN generates an
image, we apply the semantic extractor to the generator’s
feature maps to predict a semantic mask. The segmentation
is compared with the pretrained segmenter’s prediction to
compute the IoU.

As some datasets (e.g., LSUN’s bedroom dataset) may
be more difficult to segment than some others (e.g., the
CelebAHQ dataset), we compute relative performance dif-
ferences between semantic extractors. Concretely, for each
GAN model, there are three semantic extractors to be eval-
uated, which are LSE, NSE-1, and NSE-2. Denoting their
mIoUs with the pretrained segmenter as yi, and the high-
est mIoU among the three as y⇤, the relative performance
difference of each semantic extractor is defined as yi�y⇤

y⇤ .

E. Category selection
For GANs trained on bedroom and church images, we rely

on DeepLabV3 trained on ADE20K to provide the training
supervision. In this section, we aim to remove categories
that are not generated by GANs.

First of all, we train and evaluate semantic extractors on
the full set of 150 classes. Then, we remove all the categories
that are predicted with mIoU < 10% by all the semantic
extractors. In other words, a category will be selected as
long as any of the LSE, NSE-1, and NSE-2 predicts it with
mIoU > 10%. In this way, the list of selected categories
for each GAN model are decided. The formal results are
obtained by training and evaluating on the selected categories
under the same settings.

The evaluation of LSE, NSE-1, and NSE-2 trained on
full categories is shown in Table 4. Generally, the re-trained
semantic extractors obtain slightly better performance, which

is expected. We also show the IoU for each category in
Table 5, where the table headers also list the final selected
categories for each GAN model.

F. Cosine similarity of categories
As mentioned in Sec. 3.1, the linear formulation indicates

that the features of a particular category can be bounded by a
hyper-cone. To verify this geometric intuition, we propose to
test a stronger hypothesis: the features of different categories
are well-separated. In other words, the distances of features
within a category are closer than those between different
cateogories. Our approach is to sample features for each
category fairly, and compute the cosine distances between
features.

First of all, we need to ensure the fairness of compari-
son for each category. For this purpose, we propose a fair
sampling algorithm (Algorithm 1) which repeatedly samples
images and record features fairly until enough features are
collected. In every image, if the feature number of a cate-
gory is larger than a threshold T1, then T1 feature vectors
from that category are chosen randomly without replace-
ment (denoted by choice(a,N)). The chosen vectors would
be accumulated to a category feature pool until the feature

Algorithm 1: Fair feature sampling algorithm.
Input: G; P ; T1; T2

Output: {fk}
for k = 1, 2, . . . ,M do

fk = ;
while 9k, |fk| < T2 do

z ⇠ N (0, I)
I, F = G(z) // F denotes features
S = P (I)
for k = 1, 2, . . . ,M do

if |fk| < T2 and |{p|Sp = k}| � T1 then
R = choice({p|Sp = k}, T1)
fk = fk [{Fp|p 2 R}

3

wall floor ceiling bed win. table curtain painting lamp cushion pillow flower light chdr. fan clock
LSE 91.29 85.56 88.47 90.53 75.58 67.19 43.13 68.79 59.43 32.29 46.05 12.98 36.73 18.06 37.79 14.77

NSE-1 92.13 87.06 89.79 91.99 76.40 69.98 46.14 73.71 62.70 34.21 48.10 15.76 40.04 20.34 45.62 12.39
NSE-2 91.56 86.22 88.78 91.15 72.94 67.52 42.77 69.43 58.61 30.87 46.20 4.76 26.75 12.51 35.14 5.39
LSE 91.29 85.95 88.27 90.94 76.23 67.31 42.08 69.29 59.28 31.17 45.57 11.77 36.17 18.07 35.72 13.62

NSE-1 92.21 87.12 89.05 91.80 76.37 69.62 45.74 71.69 62.34 33.22 47.98 12.40 39.10 18.57 43.28 12.74
NSE-2 91.66 86.31 88.65 91.21 74.79 68.85 43.66 70.70 60.51 26.36 45.34 4.01 31.83 11.22 30.61 7.13

(a) StyleGAN2-Bedroom

wall floor ceiling bed win. table curtain chair painting rug wdrb. lamp cushion chest pillow flower light chdr. fan
LSE 82.30 74.12 73.79 88.28 55.34 47.58 37.13 9.10 64.01 8.93 11.07 42.91 33.42 19.09 46.51 9.02 11.45 22.70 18.55

NSE-1 83.78 75.50 76.55 89.40 57.24 50.63 40.96 10.52 67.41 11.54 12.31 48.90 36.62 18.66 49.07 10.67 25.08 26.49 29.66
NSE-2 83.05 74.61 75.44 89.34 53.99 47.98 39.63 6.03 64.04 5.11 8.78 45.89 35.95 17.45 48.88 3.02 12.32 16.52 21.49
LSE 83.12 74.70 73.90 88.82 56.80 45.78 37.19 10.24 62.87 9.35 10.81 42.43 33.26 20.91 46.19 7.17 11.01 25.37 18.18

NSE-1 84.37 75.01 76.30 89.90 58.27 49.78 39.98 11.95 66.87 12.77 12.04 49.36 35.88 22.91 48.95 10.32 24.10 25.93 27.83
NSE-2 83.81 74.19 75.38 89.64 55.27 47.43 40.03 11.23 63.60 6.76 9.27 46.61 34.22 15.45 47.84 0.66 8.92 14.58 13.85

(b) StyleGAN-Bedroom

wall floor ceiling bed windowpane table curtain painting lamp pillow light chandelier fan
LSE 69.46 45.07 54.05 68.39 36.38 12.58 25.77 32.67 17.18 16.10 13.65 12.14 18.06

NSE-1 70.75 46.78 57.01 70.35 38.84 14.78 29.07 35.66 18.35 18.86 15.42 9.49 17.36
NSE-2 68.60 45.19 54.56 68.12 33.03 12.06 27.67 34.59 15.31 16.79 0.11 0.00 0.00
LSE 71.91 47.88 54.53 70.29 37.06 11.71 25.39 33.74 16.82 17.90 15.57 10.83 17.94

NSE-1 72.91 49.01 56.42 71.69 38.90 14.35 28.34 35.39 18.21 19.31 13.58 10.45 17.08
NSE-2 72.11 47.90 54.72 71.41 38.46 13.14 27.77 35.41 16.83 18.65 0.00 1.22 1.30

(c) PGGAN-Bedroom

building sky tree road grass sidewalk person earth plant car stairs
LSE 85.94 97.52 76.51 24.19 40.16 16.71 15.78 13.72 8.92 12.22 13.43

NSE-1 86.93 97.87 78.59 25.76 44.45 17.73 17.03 14.04 10.62 13.30 14.39
NSE-2 86.65 97.71 77.96 22.16 37.87 10.78 12.92 8.87 7.52 8.21 8.91
LSE 87.96 97.46 76.31 27.32 41.61 17.08 17.62 14.21 8.28 12.84 14.23

NSE-1 88.75 97.70 78.16 27.14 44.96 18.82 16.76 15.92 9.99 12.68 15.26
NSE-2 88.77 97.69 77.66 22.33 39.78 13.38 12.52 10.80 6.31 8.58 10.81

(d) StyleGAN2-Church

building sky tree road grass sidewalk person plant signboard path
LSE 88.18 95.53 49.14 23.29 39.34 11.07 9.42 9.32 14.11 8.52

NSE-1 88.55 95.69 54.25 25.06 42.24 11.05 11.61 12.55 22.53 10.40
NSE-2 87.74 95.34 48.18 19.77 34.36 7.79 10.11 8.51 14.37 6.63
LSE 91.30 95.53 47.46 25.30 41.63 13.08 8.39 9.17 13.80 8.84

NSE-1 92.01 96.01 53.01 28.06 44.84 13.33 11.56 12.25 16.62 10.63
NSE-2 91.58 95.66 49.60 22.96 35.72 7.95 9.47 9.12 12.69 5.40

(e) StyleGAN-Church

building sky tree road grass signboard
LSE 83.98 91.21 45.55 17.01 30.14 28.51

NSE-1 84.60 91.46 47.92 18.79 31.17 29.71
NSE-2 83.79 90.91 42.99 15.19 23.64 14.35
LSE 88.17 91.33 44.57 29.10 34.05 20.78

NSE-1 88.98 92.02 47.18 31.43 36.08 22.37
NSE-2 88.35 91.75 44.85 25.91 30.31 16.00

(f) PGGAN-Church
Table 5. The IoU (%) of each category for LSE, NSE-1, and NSE-2. In every subtable, the first three rows show the results of models trained
with full classes during the category selection process. The last three rows of each subtable show the results of the models used in Table 1,
which are obtained by re-training on the selected classes. The abbreviation “win.”, “wdrb.”, “chdr.” stands for “windowpane”, “wardrobe”,
and “chandelier”, respectively.

4

(a) StyleGAN-CelebAHQ

(b) StyleGAN2-FFHQ
Figure 9. The cosine similarity between categories. The features
for each category are collected using Algorithm 1.

Algorithm 2: Image editing algorithm.
Input: G; L; Lreg; N
Output: latent code z
for i = 1, . . . , N do

zi zi�1 + optimizer(L(zi�1) + Lreg(zi�1))
z zN

number reach T2. The algorithm would terminate when all
the category feature pools have collected T2 features. The
fair sampling algorithm gauruantees that each category fea-
ture pool consists of T1 randomly chosen vectors from T2

T1

randomly sampled images. As the sampling procedure is
identical for each category, the sampled features are fair
for each category. In practice, we choose T1 = 200 and
T2 = 4000.

Second, we calculate the cosine similarity between cat-
egories using the fairly sampled features. Specifically, we
first calculate the pairwise cosine similarity between feature
vectors of two pools, resulting in a T2⇥T2 confusion matrix.
The two pools can belong to different categories (inter-class)
or the same category (intra-class). The cosine similarity
cos(A,B) of category A and B is defined as the mean of the
entire matrix.

We show results of StyleGAN-CelebAHQ and
StyleGAN2-FFHQ in Fig. 9. Most diagonal elements of
the confusion matrix have higher cosine similarity than
other elements in a row. It is indicated that the features
in a category is more similar to one another than features
between different categories.

G. Details of Semantic Image Editing
Algorithm. A general image editing algorithm is shown in
Algorithm 2, whose inputs are the generator G, the edit loss
L, the optional regularization loss Lreg, and total iteration
number N .

For color space editing, the editing loss will be the color
editing loss Lc, defined as Lc = 1

||M ||22
||M � (G(zi) �

C)||22, where C is the color stroke, M is the mask of the
modified region. For semantic image editing, the editing loss
will be the semantic editing loss Ls as defined in Sec. 4.1.
The regularization loss is composed by items including the
color preservation loss Lp = ||(1�M)�(G(zi)�G(z0))||22

||1�M ||22
, the

neighbor regularization loss Ln = ||zi � z0||22, and the prior
regularization loss Lz = ||zi||22. zi denotes the latent vector
for iteration i and z0 denotes the initial latent vector.

For color space editing, its total loss is L = Ls +
10�3Ln + 10�3Lz . For SIE, the total loss is L = Lc +
Lp + 10�3Ln + 10�3Lz .

Usage. In practice, our image editing application works in
two steps: The first step is to annotate 1 to 8 images sampled

5

from GAN. The backend of the application will then train a
few-shot LSE using the annotations. The second step is to
edit any sampled images. The editing interface will provide
the semantic mask extracted by the few-shot LSE along with
the image. When the user wants to edit an image, he draws
some strokes on the semantic mask to form a target mask.
Then, the backend would run the SIE algorithm and return
an image that is closer to the target.

H. Semantic-Conditional Sampling.
Algorithm. To sample an image matching the given mask,
we first try to find a good initialization. We randomly sample
ninit latent codes and select the initialization to be the one
closest to the target mask. Next, we iteratively optimize the
latent code to match the target mask using the cross-entropy
loss defined in (3.1). The semantic masks can be predicted
using either a pretrained segmenter or a few-shot LSE.

The SCS algorithm is defined formally in Algorithm 3.
Its inputs are the current latent code z, the target semantic
segmentation Y , the generator G, the semantic predictor P ,
the initialization number ninit, and the iteration number N .
Its output will be image samples that respect the given mask
Y .

In practice, we use ninit = 10 for SCS on face images.
ninit = 100 is used for bedroom and church images, as
they are much more diverse than faces. The optimization
is repeated for 50 iterations. The optimizer is Adam with
default hyperparameters (lr=10�3, �1 = 0.9, �2 = 0.999).
These settings are manually selected without tuning.

For SCS on facial images, the target masks are selected
randomly from the annotations in the CelebAMask-HQ [24]
dataset. For bedroom and church, the masks are predicted
from images sampled from truncated latent space, which
has better image quality than the full latent space [21]. The
truncated latent space W� is obtained by truncating the
latent vectors of W within a distance of the statistical center.

Evalution. Our proposed method plugs in a few-shot LSE
for P , while the baseline uses a pretrained segmentation

Algorithm 3: Semantic-conditional sampling algo-
rithm.

Input: G; P ; Y ; ninit; N
Output: latent code z
z̄i ⇠ N(0, I), i = 1, . . . , ninit
Si = P (G(z̄i))
Pi = |{p|Si,p = Yp}|
z0 = z̄↵, ↵ = argminiPi

for i = 1, . . . , N do
L = L(P (G(zi�1)), Y)
zi = optimizer(L, zi�1)

z zN

network as P . To evaluate the performance of SCS models,
we again rely on a pretrained segmentation network, P ⇤.
In this work, the pretrained network used by the baseline
is exactly the same as the one used in evaluation. This is
slightly biased toward the baseline, yet our method is still
able to match or surpass the baseline.

Formally, let the set of targets be Y . The images sampled
by a SCS model given a target Yi are denoted as a set Ii. The
semantic agreement A of sampled images can be measured
by the mean IoU between the predicted segmentation masks
and the target mask:

A(I,Y;P ⇤) =
X

1i|Y|
1j|Ii|

1

|Ii||Y|mIoU(Yi, P
⇤(Ii,j)) (7)

In practice, we select 100 target masks and conditionally
sample 10 images for each target, i.e., |Y| = 100 and |Ii| =
10. As a result, we obtain 1,000 images for the evaluation
of each setting of SCS. To account for the variance of few-
shot LSEs, we repeat the training for each model 5 times, as
mentioned in Sec. 3.3.

I. Layerwise analysis
During this work, we examined layer-wise semantics,

which refers to the semantics extracted from each layers
alone. As the original training objective (3.1) only optimizes
the summation from all layers, the semantics from each layer
may not be a good segmentation individually. To extract the
layer-wise semantics better, we add a cross-entropy loss term
on each layer. Theoretically, the best possible layer-wise
semantics should be obtained by training only on that layer.
However, the computational cost would then be prohibitive.
Thus, we choose to optimize all layer losses together.

To put it more formally, we denote the output of LSE
on layer i to be Si = Ti · xi (the final segmentation is
S =

PN�1
i=1 u"i (Si)). The training objective becomes

Ll = L(S, Y) +
N�1X

i=1

↵iL(u"i (Si), Y), (8)

where Y is the segmentation label, L is the standard
cross-entropy loss, and ↵i is the coefficient for each layer. In
practice, we set ↵i = 0.1. The training procedure is exactly
the same.

The visualizations of layer-wise semantics are shown in
Fig. 10. Our main discoveries are twofold: (1) the semantic
layout in each layer becomes refined as the network layer
progresses from input to output; (2) the most semantically
rich layers are often near the middle layer of the network.
However, it remains unclear how to make use of the layer-
wise semantics and we choose to leave this question for
future research.

6

Figure 10. The layer-wise semantics extracted from PGGAN, StyleGAN, and StyleGAN2. Layer indices are shown in the headers.

7

skin nose eye-g eye brow ear mouth u-lip l-lip hair hat ear-r neck cloth
StyleGAN2-FFHQ

LSE 95.9% 94.7% 69.9% 91.0% 83.5% 80.5% 84.5% 87.8% 91.2% 92.9% 11.1% 22.8% 91.0% 72.5%
NSE-1 97.0% 95.4% 72.4% 92.1% 88.2% 83.0% 87.4% 91.6% 92.8% 94.2% 12.9% 34.0% 92.9% 75.9%
NSE-2 96.9% 95.3% 73.4% 92.0% 87.7% 82.8% 87.7% 90.9% 92.9% 94.1% 12.9% 28.6% 92.4% 72.8%

StyleGAN-CelebAHQ
LSE 93.9% 91.3% 25.7% 86.2% 75.9% 63.5% 75.6% 81.1% 85.4% 87.5% 0.0% 13.1% 84.5% 35.9%

NSE-1 95.8% 93.6% 22.8% 89.3% 83.2% 69.4% 78.8% 87.4% 88.7% 90.8% 0.3% 21.3% 88.0% 41.2%
NSE-2 96.0% 94.1% 22.1% 89.4% 84.7% 69.7% 79.0% 88.0% 89.5% 90.9% 0.0% 19.0% 87.8% 39.2%

PGGAN-CelebAHQ
LSE 92.7% 89.4% 19.7% 84.9% 71.7% 61.9% 72.4% 81.4% 84.7% 85.2% 5.0% 16.1% 79.8% 34.1%

NSE-1 93.8% 90.9% 22.0% 86.3% 78.4% 63.0% 71.6% 83.0% 85.6% 86.4% 6.3% 20.3% 81.5% 37.0%
NSE-2 94.1% 92.0% 20.8% 86.2% 78.9% 64.4% 73.0% 83.9% 86.4% 86.9% 6.2% 21.3% 82.2% 37.4%

Table 6. The IoU for each category (excluding background category) of LSE, NSE-1 and NSE-2. The groundtruth used in the IoU
computation is obtained from UNet.

J. Supplementary results
Additional qualitative results comparing LSEs and NSEs

are shown in Fig. 11.
Category IoUs for bedroom and church models are sum-

marized in Table 5. They are shown together with category
IoUs from models trained with full ADE20K categories. For
face GANs, the results are shown in Table 6.

More results for Semantic Image Editing are shown in
Fig. 12.

We present supplementary results for Semantic Condi-
tional Sampling on facial images (Fig. 13), bedroom im-
ages(Fig. 14) and church images(Fig. 15).

8

(a) Face datasets. (b) LSUN-bedroom dataset. (c) LSUN-church dataset.
Figure 11. Qualitative comparisions of LSEs and NSEs. For each GAN, 5 samples are shown.

9

origin UNet target SIE(UNet) SIE(8-shot LSE) SIE(LSE)

+ hair

+ hair

- hair

- hair

+ mouth

- mouth

+ eye

- eye

+ ear

+ cloth

- cloth

+ glasses

+ glasses

- glasses

+ hat

✓ ✓ ✓

✗ ✗ ✗

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✓ ✓

✗ ✗ ✗

✗ ✓ ✓

✓ ✓ ✓

Figure 12. More SIE results on StyleGAN2-FFHQ. Annotations on the left are users’ edit intentions. The following columns are original
images, the face segmentation from UNet, the modified semantic mask by the user, the results from SIE(UNet), SIE(8-shot LSE), and
SIE(LSE), respectively. The green ticks and red crosses represent whether the editing success or not. Other yellow ticks indicate that the
image quality degrades.

10

(a) SCS(1-shot LSE) (b) SCS(4-shot LSE)

(c) SCS(8-shot LSE) (d) SCS(16-shot LSE)

(e) SCS(UNet)
Figure 13. The results of SCS on StyleGAN2-FFHQ using LSEs and UNet.

11

(a) SCS(1-shot LSE) (b) SCS(4-shot LSE)

(c) SCS(8-shot LSE) (d) SCS(16-shot LSE)

(e) SCS(DeepLabV3)
Figure 14. The results of SCS on StyleGAN2-Bedroom using LSEs and DeepLabV3.

12

(a) SCS(1-shot LSE) (b) SCS(4-shot LSE)

(c) SCS(8-shot LSE) (d) SCS(16-shot LSE)

(e) SCS(DeepLabV3)
Figure 15. The results of SCS on StyleGAN2-Church using LSEs and DeepLabV3.

13

