
Supplementary Material for
PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on

Point Clouds

Outline
This supplementary document is arranged as follows:
(1) Sec. A benchmarks the performance of the most recent
point convolutional operators under the same backbone ar-
chitecture and the same data augmentation strategies;
(2) Sec. B investigates the effects of ScoreNet on PAConv;
(3) Sec. C elaborates on network configurations and imple-
mentation strategies for different down-stream tasks;
(4) Sec. D presents a CUDA implementation of PAConv;
(5) Sec. E lists detailed semantic segmentation results with
per-category scores;
(6) Sec. F visualizes the results of the baseline (i.e. Point-
Net++) and ours (i.e. PointNet++ equipped with our PA-
Conv) to facilitate the comparisons.

A. Comparison of Point Convolutional Opera-
tors

In this section, we focus on comparing the capability of
PAConv with other different point convolutional operators.
We compare with the most recent convolutional operators –
PointConv [27] and KPConv [22]. To minimize the influ-
ence of the network architectures, we choose the classical
MLP-based network PointNet++ [18] as the backbone and
integrate other convolution operators by directly replacing
the MLPs, following how we embed our PAConv into Point-
Net++ as mentioned in Sec. C.2.

Specifically, we replace the MLPs in PointNet++ with
the PointConv ∗ [27] and KPConv † [22] operators, while
ensure not making any changes on the original network ar-
chitecture and feature-dims of the original PointNet++. All
the experiments are conducted on the S3DIS [1] dataset, and
adopt the Area-5 evaluation protocol, under the same data
augmentation strategies for fair comparisons.

As summarized in Table. I, our PAConv improves the
mIoU of PointNet++ by 9.31%↑ with decent efficiency.
However, PointConv only promotes the mIoU of Point-
Net++ with 2.7%↑ while the inference is time-consuming
with tremendous amount of FLOPs.

Note: Since the radius to initialize kernel points in KP-
Conv [22] need to be specifically tuned for different point

Method mIoU
PointNet++ [18] 57.27
PointConv * [27] 59.97
KPConv * [22] -
PAConv * 66.58

Table I. Segmentation results (%) of PointNet++ [18], PointConv
[27] and our PAConv on S3DIS Area-5. * indicates plugging
the corresponding convolution operator to the original PointNet++
[18] network without changing network configurations. KPConv
[22] is not reported due to the result reproduced by our implemen-
tation is not comparable with its original version.

cloud scales, it is tricky to adjust this radius in our im-
plementation. Specifically, following the official code † of
KPConv, we have tried exhaustive search to set the radius
ranging from 0.07 ∼ 0.6, which is multiplied by 2 at each
downsampling layer. However, the mIoU can only reach
11% ∼ 26%. This result is not comparable with its original
version, thus it is not reported here.

Compared with KPConv, our PAConv does not require
either complicated design of network architecture or hand-
crafted adjustment of kernel point space, which is a more
flexible and efficient point convolutional operator, adaptable
to different applications.

B. More Explorations on ScoreNet
ScoreNet Depth. The ScoreNet in PAConv consists of
several fully connected layers with feature dim [f1, ..., fd].
Here we aim to figure out how the depth of ScoreNet in-
fluences the performance of our PAConv. Same with the
ablation studies in the main paper, this experiment is con-
ducted on PAConv without adding correlation loss on the
S3IDS dataset.

Table. II shows the result, where the corresponding
time complexity (floating point operations/sample) of
each setting is also enumerated for developers to balance
the performance and efficiency. We clearly see that a

* https://github.com/DylanWusee/pointconv_pytorch
† https:///github.com/HuguesTHOMAS/KPConv-PyTorch

1

https://github.com/DylanWusee/pointconv_pytorch
https:///github.com/HuguesTHOMAS/KPConv-PyTorch


ScoreNet Layer mIoU FLOPs/sample(M)
[16] 64.42 1178

[16, 16] 65.29 1215
[16, 16, 16] 65.63 1253

Table II. Segmentation results (%) and #FLOPs/sample (M) of PA-
Conv on the S3DIS dataset using different ScoreNet depth settings.
Area-5 evaluation is adaopted. Deeper ScoreNet brings better per-
formance but has lower efficiency.

deeper ScoreNet brings better performance while has lower
efficiency.

Score Distribution in the Network. Furthermore, we vi-
sualize the average score coefficients of each weight matrix
Bm for all points at different network layer depths on S3DIS
Area-5 segmentation task, aiming to figure out how scores
distribute in the network.

As illustrated in Fig. II, the scores of different weight
matrices are diversely distributed (i.e., non-uniform and
not only focus on single weight matrix) at all layers, which
means nearly all the weight matrices in the weight bank
have the possibility to be chosen for assembling point
convolution kernels. This proves that the weight matrices
in our PAConv are fully utilized, bringing more flexibility
in the dynamic kernel assembling.

Score Distribution in 3D Space. Following Sec.6.1 of the
main paper, we provide more visualizations to demonstrate
the spatial distribution of scores. As demonstrated in Fig. I,
different weight matrices capture different position relations
in 3D space.

C. Network Configurations and Implementa-
tions

Our PAConv is implemented using Pytorch [16]. A
data-parallel training scheme is adopted on several Nvidia
GeForce GTX 2080 Ti GPUs. The details of networks and
training strategies for different tasks are illustrated below.

C.1. Object-Level Tasks

Network Configurations. As mentioned in the main pa-
per, our PAConv is purely embedded into simple classi-
cal MLP-based point cloud networks without any modifi-
cations on network architectures or parameters (i.e. feature
dimensions).

We employ PointNet [17] and DGCNN [26] as the back-
bones for object-level tasks (i.e. object classification and
part segmentation). Due to the similar architecture design
of DGCNN and PointNet, we only provide the network ar-
chitecture of DGCNN in Fig. III. It clearly shows that the
scale/resolution of the point cloud is fixed across whole net-
works.

The feature dimensions are the same as the official code
of DGCNN [26] (‡ for classification and § for part segmen-
tation). Several MLPs with a dropout probability of 0.5 are
employed at the last feature layers of the network. The di-
mensions of the fully connected layers are (512, 256, Cout)
for generating final classification scores, and (256, 256,
128, Cout) to obtain final per-point segmentation scores for
part segmentation. All layers include ReLU and batch nor-
malization except for the last score prediction layer. As for
the part segmentation, the one-hot encoding (16-d) of the
object label is concatenated to the last feature layer.

We set the number of neighbors in KNN search to 20 for
classification and 30 for part segmentation when building
neighborhood in Euclidean space at each PAConv.

Training. We follow the official code of DGCNN [26] to
train the network.

For the classification task ‡, we use SGD with learning
rate 0.1 and reduce it to 0.001 with cosine annealing. The
momentum is 0.9 and the weight decay is 10−4. The batch
size is set to 32.

For the segmentation task §, Adam with learning rate
0.003 is employed and is divided by 2 after every 40 epochs.
The weight decay is 0 and the batch size is 32. Both clas-
sification and part segmentation networks converge in 350
epochs.

C.2. Scene-Level Task

Network Configurations. For scene level tasks, we choose
PointNet++ [18] with encoding (downsampling) and de-
coding (upsampling) layers as the backbone. As shown
in Fig. IV, we directly replace the PointNet modules (i.e.
MLPs) with our PAConv for local pattern learning in the
encoding layers of PointNet++ without changing any other
network configurations.

Each encoding layer takes an N × (d + C) matrix as
input that is from N points with d-dim coordinates and C-
dim point feature. It outputs an N

′ × (d+C
′
) matrix of N

′

subsampled points with d-dim coordinates and new C
′
-dim

feature vectors summarizing local context.
Our decoding layers are totally the same as PointNet++.

Concretely, for each query point at each layer in the de-
coder, the point feature set is first upsampled through a
nearest-neighbor interpolation based on the inverse distance
weighted averagely among k nearest neighbors of the query
point. Next, the upsampled feature maps are concatenated
with the intermediate feature maps produced by encoding
layers through skip connections, after which a shared MLP
is applied to the concatenated feature maps.

‡ https://github.com/WangYueFt/dgcnn/blob/master/
pytorch

§ https://github.com/WangYueFt/dgcnn/blob/master/
tensorflow/part_seg

2

https://github.com/WangYueFt/dgcnn/blob/master/pytorch
https://github.com/WangYueFt/dgcnn/blob/master/pytorch
https://github.com/WangYueFt/dgcnn/blob/master/tensorflow/part_seg
https://github.com/WangYueFt/dgcnn/blob/master/tensorflow/part_seg


𝑩𝟏 𝑩𝟐

𝑩𝟓

𝑩𝟑 𝑩𝟒

𝑩𝟔

x-y plane

𝑩𝟖𝑩𝟕

𝑩𝟏 𝑩𝟐

𝑩𝟑 𝑩𝟒

𝑩𝟓 𝑩𝟔

𝑩𝟕
x-z plane

𝑩𝟖
y-z plane

𝑩𝟏 𝑩𝟐

𝑩𝟑 𝑩𝟒

𝑩𝟓 𝑩𝟔

𝑩𝟕 𝑩𝟖

Figure I. The spatial distribution of scores, where the input points are randomly initialized and are sent to a trained ScoreNet. When the
corresponding height of a point is higher (or the color is closer to yellow), the output score of this point is larger. It illustrates the relation
between spatial positions and score distributions for each weight matrix Bm.

Figure II. Average score coefficient of each weight matrix Bm at
different layer depths. The corresponding score of each weight
matrix is diversely distributed, indicating that all the weight matri-
ces are fully utilized for assembling point convolution kernels.

Same with PointNet++ [18], we use the follow-
ing notations to describe our network architecture.
EN(N, [l1, ..., ld]) is an encoding layer with N query points
using d consecutive PAConv with feature dim li(i =
1, ..., d). DE(l1, ..., ld) is a decoding layer with d MLPs,
which is used for updating features concatenated from in-
terpolation and skip link. With these notations, the network
can be represented as:

EN(1024, [32, 32, 64])
↓

EN(256, [64, 64, 128])
↓

EN(64, [128, 128, 256])
↓

EN(16, [256, 256, 512])
↓

DE(256, 256)
↓

DE(256, 256)
↓

DE(256, 128)
↓

DE(128, 128, 128)

Additionally, in each PAConv, we choose the nearest 32
points (K = 32) in Euclidean space as the neighboring
points for each query point. Each layer is followed by ReLU
and batch normalization except for the last score prediction
layer. At last, several MLPs (128, 128, Cout) with dropout
ratio 0.5 is utilized to output the final point-wise scores for
semantic segmentation.

Training. We employ SGD optimizer with initial learning
rate 0.05 and divide it by 10 at the 60th and 80th epoch. The

3



MLP 
Max

pooling 

1024 MLPs 𝐶!"#

cl
as

sif
ic

at
io

n
ou

tp
ut

 sc
or

es

𝑁, 𝐶!"#

se
gm

en
ta

tio
n

ou
tp

ut
 sc

or
es

1024
MLPs 

Max
pooling 

categorical 
vector

MLP 
repeating 

𝑁, 1088 MLPs 

(𝑁,
3) (𝑁,

64)

(𝑁,
64)

(𝑁,
128

)
(𝑁,
256

)

(𝑁,
64)

(𝑁,
64)

(𝑁,
128

)

Concatenate 
Operator

Classification Network

Part Segmentation Network

PAConvPAConvPAConvPAConv

PAConv PAConv PAConv

Figure III. Network based on DGCNN [26] for object classification and shape part segmentation. The architecture is totally same with the
official source code of DGCNN, where the EdgeConv of DGCNN is replaced by our PAConv. We observe that the scale/resolution of the
point cloud is fixed across the whole network.

.¸

sampling & 
grouping

sampling & 
grouping

PAConv PAConv

Encoding Layers

.¸

interpolate unit
PointNet

interpolate unit
PointNet

skip link concatenation

Decoding Layers

(𝑁,
𝑑 +

𝐶)

(𝑁!,
𝐾, 𝑑

+ 𝐶
)

(𝑁!
, 𝑑 +

𝐶!)

(𝑁",
𝐾, 𝑑

+ 𝐶!
)

(𝑁"
, 𝑑 +

𝐶")

(𝑁!
, 𝑑 +

𝐶"+
𝐶!)

(𝑁!,
𝑑 +

𝐶#)

(𝑁,
𝑑 +

𝐶#+
𝐶)

(𝑁,
𝐶$%&

)

per-point sc
ores

Figure IV. Large scene segmentation network built on PointNet++ [18]. We directly replace the PointNet (i.e. MLPs) operations with our
PAConv for local feature representation in the encoding layers of PointNet++ without changing any other network configurations.

momentum is 0.9 and the weight decay is 10−4. The batch
size is 16 and the total number of epochs is 100.

D. CUDA Implementation

By re-formulating Eq. (3) of the main paper to gi =

Λj∈Ni

∑M
m=1((Bmfj)S

m
ij ), PAConv can be realized equiv-

alently by first transforming features using weight matrices,
then assembling transformed features with scores. We im-
plement a CUDA layer to assemble neighbor features by
querying neighbor indices on-the-fly without storing large
intermediate matrix (Fig. V). This reduces memory usage
from 10G+ to 5600M with 65,536 points. The CUDA code
is also released.

Note that the performance on S3DIS semantic segmen-
tation is slightly different between CUDA version and the
original version. In CUDA version, since we only main-
tain one feature for each point on-the-fly regardless of the

!×#$%
Input Feature

Weight Matrices
&×C()×#*+,

!×&×#*+,
Weighted Feature (wf)

!×-×&
Scores (s)

!×-×#*+,
Grouped New Feature (gf)

!×#*+,
Output Feature

!×-
KNN Indices

./ 0, 2, 34 = 6
789

:
;(0, 2,=)×?/(200_ABC(0, 2),=, 34)

CUDA Implementation Small matrix! Avoids expanding a dimension of K.

Figure V. The CUDA implementation of our PAConv.

local area it belongs to, it is necessary to apply neighbor-
ing feature aggregation after each PAConv layer. However,
our original version exactly follows PointNet++ [18], where
neighboring point features are firstly respectively refined in
each local area by three continuous PAConv layers, and are
aggregated then.

E. More Segmentation Results

We provide more detailed segmentation results of our
PAConv and all the other methods listed in the main paper.

4



First, we summarize the segmentation results of each
category on S3DIS [1], plus mean of class-wise accuracy
(mAcc). As shown in Table. III, our PAConv with Lcorr

achieves the best mAcc among all the approaches. Without
adopting the computation and memory intensive grid sam-
pling strategy, our approach compares on par with KPConv
with deformable design.

Next, Table. IV reports the results on S3DIS with 6-fold
cross validation (calculating the metrics with results from
different folds merged), where our method achieves compa-
rable performance with the state-of-the-arts. To be noted,
we do not use grid sampling.

Last, Table V enumerates the mIoU of each class on
ShapeNet Part [29] for shape part segmentation task.

F. Visualization of Result Comparisons on
S3DIS

Since we employ PointNet++ [18] as the backbone for
the indoor scene segmentation on S3DIS [1], we provide the
visualization results to intuitively compare the performance
between original PointNet++ and PointNet++ after integrat-
ing PAConv. As shown in Fig. VI, PointNet++ equipped
with PAConv achieves conspicuously stronger performance
than original PointNet++ on various scenes or areas.

5



Method Pre. mIoU mAcc ceil. floor wall beam col. wind. door chair table book sofa board clut.
PointNet [17] BLK 41.09 48.98 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22
SegCloud [21] BLK 48.92 57.35 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60
TangentConv [20] BLK 52.6 62.2 90.5 97.7 74.0 0.0 20.7 39.0 31.3 69.4 77.5 38.5 57.3 48.8 39.8
PointCNN [7] BLK 57.26 63.86 92.31 98.24 79.41 0.00 17.60 22.77 62.09 80.59 74.39 66.67 31.67 62.05 56.74
ParamConv [25] BLK 58.27 67.01 92.26 96.20 75.89 0.27 5.98 69.49 63.45 66.87 65.63 47.28 68.91 59.10 46.22
PointWeb [5] BLK 60.28 66.64 91.95 98.48 79.39 0.00 21.11 59.72 34.81 88.27 76.33 69.30 46.89 64.91 52.46
PointEdge [4] BLK 61.85 68.30 91.47 98.16 81.38 0.00 23.34 65.30 40.02 87.70 75.46 67.78 58.45 65.61 49.36
GACNet [24] BLK 62.85 - 92.28 98.27 81.90 0.00 20.35 59.07 40.85 85.80 78.54 70.75 61.70 74.66 52.82
Point2Node [3] BLK 62.96 70.02 93.88 98.26 83.30 0.00 35.65 55.31 58.78 84.67 79.51 71.13 44.07 58.72 55.17
KPConv rigid [22] Grid 65.4 70.9 92.6 97.3 81.4 0.0 16.5 54.5 69.5 90.1 80.2 74.6 66.4 63.7 58.1
KPConv deform[22] Grid 67.1 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
FPConv [8] BLK 62.8 - 94.6 98.5 80.9 0.0 19.1 60.1 48.9 88.0 80.6 68.4 53.2 68.2 54.9
SegGCN [6] BLK 63.6 70.44 93.7 98.6 80.6 0.0 28.5 42.6 74.5 88.7 80.9 71.3 69.0 44.4 54.3
PosPool [13] Grid 66.7 - - - - - - - - - - - - - -
PointNet++ [18] BLK 57.27 63.54 91.31 96.92 78.73 0.00 15.99 54.93 31.88 83.52 74.62 67.24 49.31 54.15 45.89
PAConv w/o Lcorr (*PN2) BLK 65.63 72.75 93.10 98.42 82.64 0.00 22.59 61.30 63.31 87.95 78.49 73.46 64.51 70.10 57.26
PAConv w/ Lcorr (*PN2) BLK 66.58 73.00 94.55 98.59 82.37 0.00 26.43 57.96 59.96 89.73 80.44 74.32 69.80 73.50 57.72

Table III. Segmentation results (%) on S3DIS Area-5. BLK and Grid signify using block sampling and grid sampling in data pre-processing,
respectively. *PN2 refers to applying PointNet++ [18] as the backbone. The best results under block and grid sampling are respectively
highlighted.

Method Pre. mIoU mAcc ceil. floor wall beam col. wind. door chair table book sofa board clut.
PointNet [17] BLK 47.6 66.2 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2
SegCloud [21] BLK - - - - - - - - - - - - - - -
TangentConv [20] BLK - - - - - - - - - - - - - - -
PointCNN [7] BLK 65.39 75.61 94.78 97.30 75.82 63.25 51.71 58.38 57.18 69.12 71.63 61.15 39.08 52.19 58.59
ParamConv [25] BLK - - - - - - - - - - - - - - -
PointWeb [5] BLK 66.73 76.19 93.54 94.21 80.84 52.44 41.33 64.89 68.13 67.05 71.35 62.68 50.34 62.20 58.49
PointEdge [4] BLK 67.83 76.26 - - - - - - - - - - - - -
GACNet [24] BLK - - - - - - - - - - - - - - -
Point2Node [3] BLK 70.00 79.10 94.08 97.28 83.42 62.68 52.28 72.31 64.30 70.78 75.77 49.83 65.73 60.26 60.90
KPConv rigid [22] Grid 69.6 78.1 93.7 92.0 82.5 62.5 49.5 65.7 77.3 57.8 64.0 68.8 71.7 60.1 59.6
KPConv deform[22] Grid 70.6 79.1 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
FPConv [8] BLK 68.7 - 94.8 97.5 82.6 42.8 41.8 58.6 73.4 81.0 71.0 61.9 59.8 64.2 64.2
SegGCN [6] BLK - - - - - - - - - - - - - - -
PosPool [13] Grid - - - - - - - - - - - - - - -
PointNet++ [18] BLK - - - - - - - - - - - - - - -
PAConv w/o Lcorr (*PN2) BLK 69.31 78.65 94.30 93.46 82.80 56.88 45.74 65.21 74.90 59.74 74.60 67.41 61.78 65.79 58.36

Table IV. Segmentation results (%) on S3DIS with 6-fold cross validation. BLK and Grid signify using block sampling or grid sampling in
data pre-processing, respectively. *PN2 refers to applying PointNet++ [18] as the backbone.

6



Method Class Inst. aero bag cap car chair ear guitar knife lamp lap motor mug pistol rocket skate table
(time order) mIoU mIoU phone top board
PointNet [17] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [18] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SynSpecCNN [30] 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1
SPLATNet [19] 83.7 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8
PCNN [2] 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
SpiderCNN [28] 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
SpecGCN [23] - 85.4 - - - - - - - - - - - - - - - -
PointCNN [7] 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
PointConv [27] 82.8 85.7 - - - - - - - - - - - - - - - -
Point2Seq [10] 82.2 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
PVCNN [14] - 86.2 - - - - - - - - - - - - - - - -
RS-CNN [12] 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
InterpCNN [15] 84.0 86.3 - - - - - - - - - - - - - - - -
KPConv rigid [22] 85.0 86.2 83.8 86.1 88.2 81.6 91.0 80.1 92.1 87.8 82.2 96.2 77.9 95.7 86.8 65.3 81.7 83.6
KPConv deform [22] 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6
DensePoint [11] 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7
3D-GCN [9] 82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.0 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8
DGCNN [26] 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
PAConv (*DGC) 84.6 86.1 84.3 85.0 90.4 79.7 90.6 80.8 92.0 88.7 82.2 95.9 73.9 94.7 84.7 65.9 81.4 84.0

Table V. Segmentation results (%) on ShapeNet Part dataset. *DGC indicates using DGCNN [26] as the backbone.

Input Ground Truth PAConv (*PN2)PointNet++

Figure VI. Visualization of semantic segmentation results on S3DIS Area-5. The first column is original scene inputs, the second column
is the ground truth of the segmentation, the third row is the scenes segmented by the backbone PointNet++ [18], and the last column shows
the segmentation results of plugging our PAconv into PointNet++. Each row denotes a scene in S3DIS Area-5. The red bounding boxes
indicate the specific areas, where our PAConv has significantly better performance than PointNet++.

7



References
[1] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M.

Fischer, and S. Savarese. 3d semantic parsing of large-scale
indoor spaces. In CVPR, 2016. 1, 5

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point
convolutional neural networks by extension operators. ACM
Trans. Graph., 2018. 7

[3] Wenkai Han, Chenglu Wen, Cheng Wang, Xin Li, and Qing
Li. Point2node: Correlation learning of dynamic-node for
point cloud feature modeling. In AAAI, 2020. 6

[4] L. Jiang, H. Zhao, S. Liu, X. Shen, C. Fu, and J. Jia. Hierar-
chical point-edge interaction network for point cloud seman-
tic segmentation. In ICCV, 2019. 6

[5] Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-
Wing Fu, and Jiaya Jia. Hierarchical point-edge interaction
network for point cloud semantic segmentation. In ICCV,
2019. 6

[6] Huan Lei, Naveed Akhtar, and Ajmal Mian. Seggcn: Effi-
cient 3d point cloud segmentation with fuzzy spherical ker-
nel. In CVPR, 2020. 6

[7] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In NeurIPS. 2018. 6, 7

[8] Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang
Liu, Shuguang Cui, and Xiaoguang Han. Fpconv: Learning
local flattening for point convolution. In CVPR, 2020. 6

[9] Zhi-Hao Lin, Sheng-Yu Huang, and Yu-Chiang Frank Wang.
Convolution in the cloud: Learning deformable kernels in
3d graph convolution networks for point cloud analysis. In
CVPR, 2020. 7

[10] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Point2sequence: Learning the shape representa-
tion of 3d point clouds with an attention-based sequence to
sequence network. In AAAI, 2019. 7

[11] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. Densepoint: Learning densely
contextual representation for efficient point cloud process-
ing. In ICCV, 2019. 7

[12] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, 2019. 7

[13] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A
closer look at local aggregation operators in point cloud anal-
ysis. In ECCV, 2020. 6

[14] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. In NeurIPS, 2019.
7

[15] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-
lated convolutional networks for 3d point cloud understand-
ing. In ICCV, 2019. 7

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In
NeurIPS, 2019. 2

[17] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, 2017. 2, 6, 7

[18] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS. 2017. 1, 2, 3, 4, 5,
6, 7

[19] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,
Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.
SPLATNet: Sparse lattice networks for point cloud process-
ing. In CVPR, 2018. 7

[20] M. Tatarchenko, J. Park, V. Koltun, and Q. Zhou. Tangent
convolutions for dense prediction in 3d. In CVPR, 2018. 6

[21] Lyne P. Tchapmi, Christopher B. Choy, Iro Armeni, JunY-
oung Gwak, and Silvio Savarese. Segcloud: Semantic seg-
mentation of 3d point clouds. In 3DV, 2017. 6

[22] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In ICCV, 2019. 1, 6, 7

[23] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-
tral graph convolution for point set feature learning. In
ECCV, 2018. 7

[24] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and
Jie Shan. Graph attention convolution for point cloud seman-
tic segmentation. In CVPR, 2019. 6

[25] S. Wang, S. Suo, W. Ma, A. Pokrovsky, and R. Urtasun.
Deep parametric continuous convolutional neural networks.
In CVPR, 2018. 6

[26] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Trans. Graph.,
2019. 2, 4, 7

[27] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In CVPR, 2019.
1, 7

[28] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In ECCV, 2018. 7

[29] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework
for region annotation in 3d shape collections. ACM Trans.
Graph., 2016. 5

[30] Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. Sync-
speccnn: Synchronized spectral cnn for 3d shape segmenta-
tion. In CVPR, 2017. 7

8


