
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Positional Encoding as Spatial Inductive Bias in GANs

Supplementary Material

A. Padding Encodes Spatial Bias for Convolutional Generators

In Sec. A.1 and Sec. A.2, we will provide the detailed deviation for Sec. 3.1 and Sec. 3.2, respectively. In addition, the
effects of the padding mode will also be analyzed with an interesting example in Sec. A.2. We show that the spatial consistent
nonlinear activation function cannot influence the weak stationarity in Sec. A.3. Section A.4 shows the bias term will not
influence the weak stationarity in the convolutional feature map. Finally, we discuss zero padding from another view by
presenting the effects of zero padding in different convolutional layers.

A.1. Detailed Proof for Weak Stationarity

Following the idea in Sec. 3.1, we will first consider the effects of translation invariance in the padding-free convolu-
tional generators and give some preliminaries in the stochastic process. Then, with zero padding, the expectation (E) and
autocorrelation function (R) for the features shows how padding leaks spatial information.

In this work, we mainly focus on the standard convolution layer with the nonlinear activation layer and take the commonly
used LeakyReLU (Eq. (1)) function as an example. The batch normalization and instance normalization are spatial identical
operation and can be merged into convolutional operation [6, 5]. Therefore, we will neglect these layers in the following proof.

LeakyReLU(y) =

{
y, y ≥ 0

γy, otherwise
. (1)

Taking the spatial noise map (X~i

i.i.d.∼ N (0, 1)) as input, the expectation of the first convolutional feature map (E(y(1)~i
)) is:

E(y(1)~i
) =

∑
k

w
(1)
k

∫ +∞

−∞
xkp(xk)dxk + b(1)

=
∑
k

w
(1)
k E(xk) + b(1) (2)

= b(1). (3)

Here, as we assume the input is sampled from a zero-expectation distribution, the final results in Eq. (3) shows the expectation
is only related to the bias parameters in convolutional layers. However, this is not the general formulation for the expectation
of the feature map in the convolutional generators.

After adopting a LeakyReLU function (g) and the next convolutional layer, we will obtain the general formulation of E(y~i):

E(y(2)~i
) =

∑
k

wk

∫ +∞

−∞
g(y

(1)
k )p(y

(1)
k )dy

(1)
k + b(2)

=
∑
k

w
(2)
k

∫ 0

−∞
γy

(1)
k p(y

(1)
k )dy

(1)
k +

∑
k

w
(2)
k

∫ +∞

0

y
(1)
k p(y

(1)
k )dy

(1)
k + b(2)

=
∑
k

w
(2)
k · (γC1 + C2) + b(2), (4)

where C1,C2 are constants from the piecewise-defined finite integration. Therefore, the translation-invariant convolutional
layer results in a spatial consistent expectation of the feature map. The expectation is a linear combination of the parameters in
the convolution kernel, which is irrelevant to the positions.

R(y~i, y~j) portrays the relationship between two spatial locations. Here, taking X~i

i.i.d.∼ N (0, 1), we directly analyze the
feature map after the convolutional operation. The bias item is removed in this part since we do not care about the spatial

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

𝑦"
𝑦#

𝑦"

𝑦#

𝑋"

𝑋#

𝑋" ∩ 𝑋#

𝑋" ∩ 𝑋# ≠ 𝜙 𝑋" ∩ 𝑋# = 𝜙

Figure 1: An illustration for the two cases of calculating the autocorrelation function in the convolutional feature map.

consistent addition component in autocorrelation analysis. However, as shown in Fig. 1, we should consider two cases of
whether the input patch regions (X~i, X~j) are seperated. If X~i, X~j are separated, it is trivial to calculateR(y~i, y~j):

R(y~i, y~j) = E(y~iy~j)

= E[(
∑
k

wkxk)(
∑
t

wtxt)]

=
∑
k,t

wkwtE(xk)E(xt)

= 0 (5)

Once there lies an intersection between the two input features, the autocorrelation function R(y~i, y~i) should be:

R(y~i, y~j) = E(y~i, y~j)

= E[(
∑
k

wkxk)(
∑
t

wtxt)]

= E[
∑

xl∈Xi∩Xj

wkl
wtlx

2
l ] + E[

∑
p 6=q

wkpwtqxpxq] (6)

=
∑

xl∈Xi∩Xj

wkl
wtlE(x2l ) (7)

= R(~i−~j), (8)

where p 6= q indicates that xp and xq are not the same feature variable. As shown in Eq. (6), the formulation can be split into
two parts of the intersection part and the separated part. The spatial independence causes the separated part to be zero. The
intersection part is related to the variance of the random variables and the parameters in the convolutional kernel. As the input
X is spatial identical, E(x2l ) must be consistent among the spatial space. Thus, Eq. (7) is only related the intersection mode of
X~i ∩X~i, which is determined by~i−~j. In summary, after fusing Eq. (5) and Eq. (7), the autocorrelation function of a feature
after convolution operation should be:

R(y~i, y~j) = R(~i−~j)

=
∑

xl∈X~i
∩X~j

wkl
wtlE(x2l ). (9)

Here, a large offest vector (~i−~j) will result in no intersection between two input feature maps. Then, there will not exist any
element (xl) belonging to X~i ∩X~j and the autocorrelation function will be zero as Eq. (5).

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A.2. How Padding Serves as Spatial Bias

Taking the zero padding into consideration, the linear combination of the parameters in the convolutional kernels in Eq. (4)
and Eq. (9) will be influenced:

E(y(2)~i
) =

∑
k

wk

∫ +∞

−∞
g(y

(1)
k )p(y

(1)
k )dy

(1)
k · 1(y

(1)
k /∈ Pad) + b(2)

=
∑
k

w
(2)
k (γC1 + C2)1(y

(1)
k /∈ Pad) + b(2), (10)

R(y~i, y~j) =
∑

xl∈X~i
∩X~j

wkl
wtlE(x2l ) · 1(xl /∈ Pad) (11)

6= R(~i−~j), (12)

where the indicator function 1(xi /∈ Pad) determines whether current input belongs to zero padding regions.
Here, we further investigate the effects of padding modes on the spatial information leak. The effects of the padding

mode can also be clarified from the view of the expectation and autocorrelation function. Reflection padding will be taken
as an example in the following analysis. In sucn padding mode, the boundary variables are copied to the padding regions.
When analyzing the expectation (E(y~i), we find the linear combination will not be influenced as Eq. (10). The expectation
with reflection padding mode is the same as the padding-free formulation in Eq. (4). However, the autocorrelation function
(R(y~i, y~i)) is influenced by the reflected padding:

R(y~i, y~j) = E[(
∑
k

wkxk)(
∑
t

wtxt)]

= E[
∑

xl∈X~i
∩X~j

wkl
wtlx

2
l ] + E[

∑
p 6=q

wkp
wtqxpxq] (13)

=
∑

xl∈X~i
∩X~j

wkl
wtlE(x2l ) +

∑
p 6=q

wkpwtqE(x2p)1(xp ∈ Pad, xp = xq) (14)

6= R(~i−~j), (15)

𝑦"
𝑦#

reflected features

padding regions

feature map

𝑋"

𝑋#

𝑋" ∩ 𝑋#

Figure 2: Illustration for refelcted padding.

where 1(xp ∈ Pad, xp = xq) indicates the whether xp
belongs to the padding regions and xq is the correspond-
ing boundary variable copied by xp. As shown in Fig. 2,
the red arrow presents the case in 1(xp ∈ Pad, xp = xq).
Unlike the zero padding, the reflection padding can intro-
duce extra relations in the non-intersection regions. As
shown in Eq. (14), though the reflected padding does
not change the expectation distribution, it adds extra
items related to the padding in the autocorrelation func-
tion (R(y~i, y~j)). Therefore, the reflection padding can
inject implicit positional embedding by only changing the
distribution of the autocorrelation function, leading to a
location-aware autocorrelation function. Other padding
modes like ‘Circular Padding’ in PyTorch can also be ana-
lyzed from the view of the expectation and autocorrelation
function similarly with Eq. (14). In ‘Circular Padding’,
the padded variable are borrowed from the other side of

the feature map. Intuitively, the padded feature variables from remote areas can be assumed to be independent to the boundary
feature variables. Thus, such padding mode cannot encode spatial information for the convolutional networks.

A.3. Effects of Nonlinear Activation Function on Autocorrelation Function

Intuitively, as a spatial identical operation, the nonlinear activation function changed the range of each feature, while does
not influence the weak stationarity. Here, we adopt the LeakyReLU function in Eq. (9) to verify it will not change the weak

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

stationarity.

R(g(y~i), g(y~j)) = E(g(y~i)g(y~j))

=

∫ +∞

−∞

∫ +∞

−∞
g(y~i)g(y~j)p(y~i, y~j)dy~idy~j

=

∫ 0

−∞

∫ 0

−∞
γ2y~iy~jp(y~i, y~j)dy~idy~j +

∫ 0

−∞

∫ +∞

0

γy~iy~jp(y~i, y~j)dy~idy~j

+

∫ +∞

0

∫ 0

−∞
γy~iy~jp(y~i, y~j)dy~idy~j +

∫ +∞

0

∫ +∞

0

y~iy~jp(y~i, y~j)dy~idy~j (16)

= F1(~i−~j) + F2(~i−~j) + F3(~i−~j) + F4(~i−~j) (17)

= R(~i−~j), (18)

where Fi(~i−~j) denotes the function related to the offet vector~i−~j. In Eq. (16), the manipulation item (y~iy~jp(y~i, y~j)dy~idy~j)
can be expanded similarly with Eq. (6) and then the final value of such item will be determined by the offet vector. Therefore,
the spatial identical nonlinear activation function like LeakyReLU cannot change the weak stationarity.

A.4. Bias Term in Autocorrelation Function

In Sec. A.1 and Sec. A.2, we do not condider the bias term in the analysis of the autocorrelation function. Intuitively, the
spatially identical addition operation cannot introduce an extra relationship between feature variables. Here, we further analyze
the effects of the bias term on R(y~i, y~j) in Eq. (9):

R(y~i, y~j) = E((y~i + b)(y~j + b))

= E(y~iy~j + b · (y~i + y~j) + b2)

= E(y~iy~j) + b · (E(y~i) + E(y~j)) + b2 (19)

= E(y~iy~j) + b2 (20)

The extra b2 term is not related to the absolute positional information. Thus, the spatially identical addition operation cannot
influence the weak stationarity in the convolutional feature map. Besides, as shown in Eq. (19), the weak stationarity indeed
implies the property of spatially consistent expectation in Eq. (4). Equation (9) reveals that if there is not any intersection
between input features, the output features are independent. After adopting the bias term, such independence is also kept:

R(y~i, y~j) = E((y~i + b)(y~j + b))

= E(y~iy~j) + b2

= b2 = E(y~i + b)E(y~j + b). (21)

A.5. Locally Asymmetric and Symmetric Zero Padding

In this section, we will clarify that it is the asymmetric zero padding that introduces the implicit spatial bias. Firstly, the
asymmetric zero padding denotes the cases shown in Fig. 3(a), where the convolutional kernel covers the locally asymmetric
zero padding at corners. Indeed, zero padding adopted in the convolutional layers is always locally asymmetric, from the
view of the effective receptive field. However, in the transposed convolution layer, Fig. 3(b) presents a case in which the
effective zero padding on the input feature is locally symmetric. As for the transposed convolutional layer for 2× upsampling
in generators, the commonly used setting also brings locally asymmetric zero padding, as illustrated in Fig. 3(c). StyleGAN2
adopts the transposed convolutional layer with the same padding mode as Fig. 3(c). As analyzed in Sec. 3.2, the locally
symmetric zero padding cannot introduce any spatial bias, because the convolutional kernel will meet the same padding
patterns anywhere during its sliding over the feature map. On the contrary, Fig. 3(a) and Fig. 3(c) present the asymmetric zero
padding pattern at corners which encodes an implicit spatial anchor for the convolutional generators.

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

zero padding feature map convolution kernel

(a) asymmetric zero padding

convolution transposed convolution

(b) symmetric zero padding (c) asymmetric zero padding

Figure 3: Illustration for asymmetric and symmetric zero padding in the convolution and transposed convolution.

B. StyleGAN2

B.1. Implementation Details

We directly follow the original setting detailed in [5] to train the StyleGAN2 model mentioned in our study. Generally,
the channel multiplier is set to two (C2), which indicates the ‘Large Network’ proposed in the original StyleGAN2. As for
the evaluation metric, we compute each metric three times with different random seeds and report their average. The FID is
calculated with 50,000 real images while the P&R is computed with 10,000 real images.

B.2. Padding Effects on StyleGAN2

Section 3.3 describes the experiments on StyleGAN2 for investigating the padding effects. The motivation of the experiments
is to adopt spatially identical input in StyleGAN2 to show the behavior of the convolutional generator. In StyleGAN2, there lie
three input signals, i.e., style latent code, spatial noise map, and the learnable constant input. Intuitively, the style latent code is
originally identical in spatial space while the spatial noise map is sampled from spatially i.i.d. noise distribution. Thus, we
only need to modify the learnable constant input at the start of the generator to guarantee that the input signals are spatially
identical. In this experiment, we directly fill in the learned constant input with an identical value. Figure 4 presents more
results sampled from the standard StyleGAN2 and padding-free StyleGAN2 with different identical input values.

As discussed in Sec. 3.1, if the generator is translation-invariant, the spatially identical input signal should have resulted
in spatially identical colors or patterns in the output images. However, the standard StyleGAN2 with a fully-convolutional
generator in Fig. 4 presents a biased spatial structure in which the borders are fixed to a frozen pattern. Once the padding is
removed from the generator, the spatially identical colors or patterns will cover the whole canvas, as shown in Fig. 4. This
experiment does not rely on any assumption on the convolutional weights like [1]. Thus, we believe that it is a more reasonable
and convenient way to show the padding effects on the convolutional generator.

C. PGGAN and DCGAN

C.1. Implementation Details

We follow the original training configuration in the training of PGGAN. In addition to the experiments on the cropped
CelebA dataset, we also present the results on the LSUN Bedroom dataset in Tab. 1. As for DCGAN, the baseline architecture
used in our experiments only contains upsampling layers and convolutional layers, because the zero padding in the transposed
convolution layer cannot be removed easily. Meanwhile, we adopt WGAN-GP [3] in DCGAN to improve the generation
quality of the baseline model. Namely, a much stronger baseline model with DCGAN architecture is used in this study.
Combine with SPE. In the experiments on PGGAN and DCGAN, we combine the padding-free generator with SPE to further
demonstrate that removing padding directly causes the lack of spatial information. Since SPE can be constructed with any
channel dimension, we combine such flexible explicit positional encoding with the padding-free PGGAN and DCGAN. SPE is
directly added with the first input feature map ahead of the convolutional generator. To be specified, the first 4× 4 feature map
is combined with SPE. Then, such a feature map containing explicit positional information will be adopted as the input of the
following convolutional generator.

5



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0 0.5 1-0.5-1

standard
StyleGAN2

padding-free
StyleGAN2

Figure 4: More results for standard StyleGAN2 (above the dotted line) and padding-free StyleGAN2 (under the dotted line).
The first column is sampled with the original leaned constant input. The other five columns are sampled with different identical
values (from left to right: -1, -0.5, 0, 0.5, 1) filling in the learned constant input at the start of the convolutional generator.

Table 1: Multi-level Sliced Wasserstein Distance (SWD) [4] between the synthesized and training images for different training
configurations at 128× 128. Each column in SWD represents one level of Laplacian pyramid [2], and the last one offers an
average of the three distances. ↓ indicates lower is better.

Training configuration
CELEBA LSUN BEDROOM

Sliced Wasserstein distance ×103 ↓ Sliced Wasserstein distance ×103 ↓
128 64 32 Avg. 128 64 32 Avg.

(a) PGGAN 3.162 4.285 5.000 4.149 7.473 5.197 5.214 5.962
(b) + Remove padding 11.169 6.945 7.488 8.534 13.619 10.043 6.581 10.081
(c) + SPE at head, w/o padding 4.555 6.164 6.365 5.694 6.588 4.437 5.090 5.371

C.2. More Results and Analyses

Table 1 furthter shows the results in LSUN Bedroom dataset with PGGAN. More qualitative results are presented in Fig. 5,
Fig. 6, and Fig. 7. In Tab. 1(c), the closer distance in the LSUN Bedroom dataset further demonstrates the impact of the spatial
inductive bias to the convolutional generator.

D. MS-PIE
D.1. Implementation Details and Other Results

In this study, we demonstrate the effectiveness of our MS-PIE in the state-of-the-art 2562 StyleGAN2 model that is
originally designed for 256× 256 image generation. Three scales will be adopted the multi-scale training strategy while the
sampling probability is fixed to [0.5, 0.25, 0.25]. When we replace the learnable constant input with the Cartesian grid, the
input feature will only contain two channels. Other training details strictly follow the original configuration in the StyleGAN2,
as mentioned in Sec. B. Finally, we show the quantitative results at 3842 scale in Tab.2.

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) PGGAN (b) + Remove Padding (c) + SPE at head, w/o padding

Figure 5: Sampled images from various PGGANs trained on cropped CelebA. (a), (b), and (c) indicate the different training
configurations in Tab. 1.

(a) PGGAN (b) + Remove Padding (c) + SPE at head, w/o padding

Figure 6: Sampled images from various PGGANs trained on LSUN Bedroom. (a), (b), and (c) indicate the different training
configurations in Tab. 1. (Best viewed with zoom in.)

(a) DCGAN (b) + Remove Padding (c) + SPE at head, w/o padding

Figure 7: Sampled images from various DCGANs trained on LSUN Bedroom. (a), (b), and (c) indicate the different training
configurations in Tab. 4 (in the main paper). (Best viewed with zoom in.)

D.2. MS-PIE in Higher Resolutions

With MS-PIE, the original 2562 StyleGAN2 containing six upsampling blocks can also achieve high-quality image
generation in higher resolutions. However, we have to admit that our MS-PIE will cause additional GPU memory cost. This
is because current deep learning frameworks, like PyTorch, always store tensors in continuous memory blocks, which will
further accelerate the computational speed. When we switch to a different generation scale from the previous training iteration,
we observe that the GPU memory that saves data for the last iteration will not be released or used for the current iteration.
Thus, during training, the total GPU memory cost is not the cost for the largest scale. The peak of the GPU memory cost may
be the sum of the cost for the three different scales. We have tested MS-PIE on Nvidia Tesla V100 with 32G GPU memory
and found the highest resolution in which we can train our model under the limitation of GPU memory.

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2: Results in 3842 scale for our MS-PIE with 2562 StyleGAN2 in FFHQ dataset. The precision and recall are calculated
at the same scale as the Fréchet inception distance (FID).‘C2’ indicates the channel multiplier in the generator is two.

Training configuration Resize
FID@384↓ Precision

(%)↑
Recall
(%)↑20M 25M

MS-PIE
w/

padding

(c) Leanable constant input Interp 4.24 4.01 74.23 54.27
(d) Cartesian spatial grid Interp 4.30 4.13 74.11 54.23
(e) SPE-interp Interp 4.27 4.08 74.07 55.09
(f) SPE-expand Expand 4.20 3.89 73.52 56.02
(g) SPE-expand-C1 Expand 4.23 4.02 74.01 55.39

MS-PIE
w/o

padding

(h) Learnable constant input Interp 5.46 5.15 72.53 53.15
(i) Cartesian spatial grid Interp 5.24 5.01 72.13 53.91
(j) SPE-interp Interp 5.53 5.21 72.56 52.17
(k) SPE-expand Expand 5.51 5.23 71.85 52.27

Figure 8: Sampled multi-scale images from 2562 StyleGAN2 with MS-PIE. We adopt three scales of 8962, 5122 and 2562

resolutions. The larger resolution is shown with larger size.

For 2562 StyleGAN2 with a channel multiplier of two, 896 × 896 is the highest resolution in which we can achieve a
competitive FID of 4.10. We adopt three different scales of 2562, 5122, and 8962 and the synthesized images are shown in
Fig 8. Reducing the channel multiplier to one, we can train the lite StyleGAN2 model with 2562, 5122, and 10242 scales in
MS-PIE. Even if only containing six lite convolutional blocks, as shown in Fig. 9, the lite generator can achieve compelling
generation quality with an FID of 6.24.

D.3. Image Manipulation

To further verify the effectiveness of our MS-PIE in image editing, we customize a manipulation algorithm for 512× 512
image manipulation with a single 2562 StyleGAN2. Based on the best training configuration in Tab. 5(f) in Sec. 4.3, we will
demonstrate its effectiveness. Achieving image manipulation in higher resolution with the 2562 backbone is not trivial. We
have tried the closed-form factorization method [7] in our generators but found that it cannot manage to control the image style.

8



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 9: Sampled images from MSStyleGAN with 10242, 5122 and 2562 resolutions. The larger resolution is shown at larger
size.

After analyzing the results and improving the closed-form factorization method, a more convenient and effective manipulation
algorithm is proposed for the generators trained in MS-PIE.

Firstly, unlike the original method, we directly concatenate all of the weights in the style encoding layer from the
upsampling convolutional blocks and compute the eigenvector for the large weight matrix. In our experiments, we found that
such eigenvectors from the large weight matrix can control the attributes of the output. Furthermore, different eigenvectors
tend to control different attributes separately. As shown in Fig. 10, the third eigenvector only controls the gender attribute
while the 10-th eigenvector only controls the pose attribute.

The eigenvectors are computed from the large weight matrix containing weights from all of the convolutional blocks. Such
eigenvectors can be applied to each convolutional block or only several blocks. For example, we can globally adopt the third
eigenvector in each convolutional block. However, as shown in Fig. 10, this eigenvector will not have any influence on other
attributes, e.g., pose, and mouth shape. The 15-th eigenvector controls the lighting of the output and the 8-th and the 9-th
convolutional block are much sensitive to this eigenvector. As shown in Fig. 10, the lighting attribute can be well controlled by
locally applying the 15-th eigenvector in the 8-th and 9-th convolutional block. Once globally applying the 15-th eigenvector
in each convolutional block, we observe that other attributes, like the color of the glass, will be influenced by the lighting.

E. SinGAN
E.1. Implementation Details

In SinGAN, we strictly follow the original training configuration to study the padding effects and the impacts of spatial
inductive bias. For all of the training samples, we adopt the minimum size of 25 at the start stage while the final size of
the final stage is set according to the original scale of the training image. As for padding removal, we carefully discard the
padding from the input noise feature and the input images at each stage. In the experiments on the Cartesian grid, we adopt the
Cartesian grid with two channels as the input positional encoding. Without other specifications, the number of total channels
in sinusoidal positional encoding is set to 8. We use 16 channels in the sample of ‘Bohemian Rhapsody’.

9



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(c) Age

(b) Pose

(a) Gender

(d) Mouth Shape (close --- open)

(f) Lighting (Locally)

(f) Lighting (Globally)

(e) Cosplay style

Figure 10: Image manipulation in 512× 512 resolution with a 2562 StyleGAN2 trained in MS-PIE.

10



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) SinGAN

(e) w/o pad in G, w/ BN in D (f) w/o pad in G, BN in D 

(e) w/o recon loss, w/ BN in D (e) w/o recon loss, w/o BN in D (e) w/ recon loss, w/o BN in D 

Figure 11: The effects of adopting batch normalization in discriminator and the reconstruction loss on SinGAN.

In the experiments with padding-free SinGAN, we modify the architecture of the discriminator by removing the batch
normalization layer. This is because the channel-wise normalization layer destroys the learned relationship between the
different channels, which brings a significant color shift in the output image. In Fig. 11, we presents an ablation study about
the color shift phenomenon. Firstly, as shown in Fig. 11(b), removing the batch normalization layer in the discriminator will
not influence the generated spatial structure, despite marginal negative effects on the texture quality. Once discarding the
reconstruction loss in SinGAN, the generator performs a significant color shift with unreasonable brightness in the results
in Fig. 11(c). Meanwhile, we observe that the spatial structure can be retained without any reconstruction supervision.
Furthermore, based on the model without reconstruction loss, we remove the batch normalization layer in the discriminator.
Surprisingly, the results in Fig. 11(d) recover the original brightness, indicating that the reconstruction loss indeed plays a role
in correcting the color shift brought by adopting batch normalization in the discriminator. Finally, in Fig. 11(e) and Fig. 11(f),
we show the results from padding-free SinGAN trained with different discriminators, i.e., with batch normalization and without
batch normalization. With a padding-free generator, adopting batch normalization in the discriminator only brings the color
shift in results while the spatial structure cannot be captured. Thus, removing batch normalization in the discriminator does
not influence the generated spatial structure that we care about in this work.

E.2. More Qualitative Results from SinGAN

Figure 12 presents more comparison for the effects of adopting different spatial inductive bias on SinGAN. The first case
with different nuts verifies that the Cartesian grid can naturally keep the global structure retained, e.g., the regular arrangements
as the same as the original image. However, such spatial inductive bias is not suitable to perform multi-scale synthesis in the
last case with a car. It is better to choose the sinusoidal positional encoding for a faithful detailed structure and realistic patch
recurrence. On the contrary, without a clear or balanced spatial bias over the whole image space, the standard SinGAN cannot
manage to perform high-quality internal sampling.

References
[1] Bilal Alsallakh, Narine Kokhlikyan, Vivek Miglani, Jun Yuan, and Orion Reblitz-Richardson. Mind the pad–cnns can develop blind

spots. arXiv preprint arXiv:2010.02178, 2020. 5
[2] Peter Burt and Edward Adelson. The laplacian pyramid as a compact image code. IEEE Transactions on Communications, 31(4):532–

540, 1983. 6
[3] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. In

Advances in Neural Information Processing Systems, 2017. 5
[4] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation.

In International Conference on Learning Representations, 2018. 6

11



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

CVPR
#1512

CVPR
#1512

CVPR 2021 Submission #1512. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) SinGAN (b) SinGAN w/ Cartesian grid (c) SinGAN w/ SPEOriginal Image

Figure 12: More results for SinGAN with different positional encodings.

[5] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality
of stylegan. In IEEE Conference on Computer Vision and Pattern Recognition, 2020. 1, 5

[6] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Weight standardization. arXiv preprint arXiv:1903.10520, 2019. 1
[7] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. arXiv preprint arXiv:2007.06600, 2020. 8

12


