
Supplementary Material
ReNAS: Relativistic Evaluation of Neural Architecture Search

Yixing Xu1, Yunhe Wang1, Kai Han1, Yehui Tang14, Shangling Jui2, Chunjing Xu1, Chang Xu3

1Noah’s Ark Lab, Huawei Technologies, 2Huawei Technologies
3The University of Sydney, 4Peking University

{yixing.xu, yunhe.wang}@huawei.com; c.xu@sydney.edu.au

1. Proof of Theorem 1

We first give the definition of σ-admissibility of the rank-
ing loss function `:

Definition 1. (σ-admissibility) Given F as a class of real-
valued functions on X . Denote ` as the ranking loss func-
tion and σ > 0. Then ` is σ-admissible with respect to F ,
if for all f1, f2 ∈ F and all (x, y), (x′, y′) ∈ (X × Y), we
have:

|`(f1, (x, y), (x′, y′))− `(f2, (x, y), (x′, y′))| ≤
σ(|f1(x)− f2(x)|+ |f1(x′)− f2(x′)|). (1)

Then, we will get the following generalization error
bound for a given ranking loss function `:

Lemma 1. Given A as the symmetric ranking algorith-
m whose outputs of samples on a training dataset D ∈
(X × Y)n is fD = argminf∈F R̂

λ
` (f), in which n ∈ N

is the number of training samples. Denote cx and cf as
the upper bound of the inputs and weights such that for
all x ∈ X and f : X → R we have |x| ≤ cx and
‖f‖2 ≤ cf . Also given ` as the ranking loss function that
satisfy 0 ≤ `(f, (x, y), (x′, y′)) ≤ L for all f : X → R and
(x, y), (x′, y′) ∈ (X × Y)2. Then for any 0 < δ < 1, with
probability at least 1− δ we have:

R`(fD) < R̂`(fD)+
8σc2xc

2
f

λn
+(

4σc2xc
2
f

λ
+L)

√
2 ln(1/δ)

n
.

(2)

Proof. Given the assumption of using a two layer neural
network with ReLU activation function, we can denote the
output of the neural network as:

f(x) =W2η(W1 · x), (3)

in which W1 and W2 are the parameters of the given net-
work, and η indicates the ReLU activation function. Also

denote ‖f‖2 =
√
‖W1‖22 + ‖W2‖22 as the `2-norm of the

parameters, we then have:

|f(x)| = |W2η(W1 · x)|
≤
∣∣|W2|η(|W1 · x|)

∣∣
= |W2 ·W1 · x|
= |W2 ·W1| · |x|

≤ 1

2
(‖W1‖22 + ‖W2‖22)|x|

≤ 1

2
cxcf‖f‖2. (4)

Thus, given Fcn. 4 mentioned above, and Theorem.8, Fcn.6
and Theorem.11 in [1], we can successfully prove Lemma
1.

After that, we prove that a hinge ranking loss is 1-
admissible with respect to F and an MSE loss is (cxcfL

2
√
λ

+

1)-admissible with respect to F .

Theorem 1. Given F as a class of real-valued functions on
X . Denote ` as the ranking loss function and σ > 0. Then
`h(f, (x, y), (x

′, y′)) = [(a−(f(x)−f(x′))·sign(y−y′))]+
is 1-admissible with respect toF , e.g. for all f1, f2 ∈ F and
all (x, y), (x′, y′) ∈ (X × Y), we have:

|`h(f1, (x, y), (x′, y′))− `h(f2, (x, y), (x′, y′))| ≤
|f1(x)− f2(x)|+ |f1(x′)− f2(x′)|. (5)

Proof. Without loss of generality, we assume that
`h(f1, (x, y), (x

′, y′)) ≥ `h(f2, (x, y), (x
′, y′)). Note that

when `h(f1, (x, y), (x
′, y′)) = `h(f2, (x, y), (x

′, y′)), we
simply have:

|`h(f1, (x, y), (x′, y′))− `h(f2, (x, y), (x′, y′))| = 0 ≤
|f1(x)− f2(x)|+ |f1(x′)− f2(x′)|,

(6)

thus the following prove is based on
`h(f1, (x, y), (x

′, y′)) > `h(f2, (x, y), (x
′, y′)), and

can be divided into following situations:

1

(1) (f1(x) − f1(x
′)) · sign(y − y′) ≤ a and (f2(x) −

f2(x
′)) · sign(y − y′) ≤ a. Then we have:

|`h(f1, (x, y), (x′, y′))− `h(f2, (x, y), (x′, y′))|
=|a− (f1(x)− f1(x′)) · sign(y − y′)
− a+ (f2(x)− f2(x′)) · sign(y − y′)|

=sign(y − y′)|f1(x)− f2(x) + f1(x
′)− f2(x′)|

≤|f1(x)− f2(x) + f1(x
′)− f2(x′)|

≤|f1(x)− f2(x)|+ |f1(x′)− f2(x′)|. (7)

(2) (f1(x)−f1(x′))·sign(y−y′) ≤ a and (f2(x)−f2(x′))·
sign(y − y′) > a. Then we have:

|`h(f1, (x, y), (x′, y′))− `h(f2, (x, y), (x′, y′))|
=|a− (f1(x)− f1(x′)) · sign(y − y′)− 0|
<|a− (f1(x)− f1(x′)) · sign(y − y′)
− (a− (f2(x)− f2(x′)) · sign(y − y′))|
≤|f1(x)− f2(x)|+ |f1(x′)− f2(x′)|. (8)

Therefore, in all situations we have:

|`h(f1, (x, y), (x′, y′))− `h(f2, (x, y), (x′, y′))| ≤
|f1(x)− f2(x)|+ |f1(x′)− f2(x′)|, (9)

and thus `h(f1, (x, y), (x′, y′)) is 1-admissible with respect
to F .

Theorem 2. Given F as a class of real-valued functions on
X . Denote ` as the ranking loss function and σ > 0. Then
`mse(f, (x, y), (x

′, y′)) = 1
2 ((f(x) − y)

2 + (f(x′) − y′)2)
is (

cxcfL

2
√
λ

+ 1)-admissible with respect to F , e.g. for all
f1, f2 ∈ F and all (x, y), (x′, y′) ∈ (X × Y), we have:

|`h(f1, (x, y), (x′, y′))− `h(f2, (x, y), (x′, y′))| ≤

(
cxcfL

2
√
λ

+ 1)
(
|f1(x)− f2(x)|+ |f1(x′)− f2(x′)|

)
. (10)

Proof.

|`mse(f1, (x, y), (x
′, y′))− `mse(f2, (x, y), (x

′, y′))|

=
1

2
|(f1(x)− y)2 + (f1(x

′)− y′)2

+ (f2(x)− y)2 + (f2(x
′)− y′)2|

=
1

2
|f21 (x)− 2f1(x) + f21 (x

′)− 2f1(x
′)

− f22 (x) + 2f2(x)− f22 (x′) + 2f2(x
′)|

=
1

2
|f21 (x)− f22 (x) + f21 (x

′)− f22 (x′)

− 2(f1(x)− f2(x))− 2(f1(x
′)− f2(x′))|

≤1

2
(|f21 (x)− f22 (x)|+ |f21 (x′)− f22 (x′)|

+ 2|(f1(x)− f2(x))|+ 2|(f1(x′)− f2(x′))|)

=
1

2
(|f1(x) + f2(x)|+ 2)|f1(x)− f2(x)|+

1

2
(|f1(x′) + f2(x

′)|+ 2)|f1(x′)− f2(x′)|. (11)

Given Fcn. 4 mentioned above, we have:

|f(x)| ≤ 1

2
cxcf‖f‖2. (12)

Also note that:

`mse = R̂`mse + λ‖f‖22 ≤ L. (13)

Since R̂`mse > 0, we have:

‖f‖22 ≤
L2

λ
. (14)

Applying Eq. 14 to Eq. 12, we have:

|f(x)| ≤ 1

2
cxcf‖f‖2 ≤

cxcfL

2
√
λ
. (15)

Finally, applying Eq. 15 to Eq. 11, we can derive the
(
cxcfL

2
√
λ

+ 1)-admissibility of `mse:

|`mse(f1, (x, y), (x
′, y′))− `mse(f2, (x, y), (x

′, y′))|

≤1

2
(|f1(x) + f2(x)|+ 2)|f1(x)− f2(x)|

+
1

2
(|f1(x′) + f2(x

′)|+ 2)|f1(x′)− f2(x′)|

≤(cxcfL
2
√
λ

+ 1)
(
|f1(x)− f2(x)|+ |f1(x′)− f2(x′)|

)
,

(16)

and thus finish the proof.

Combining the above definition, lemma and theorems,
we have proved Theorem 1 in the main paper.

2

Figure 1: An example of encoding neural network architecture into feature tensor. (a): The skeleton of the neural network
architecture. (b): A specific cell architecture with 6 nodes. (c): The corresponding adjacency matrix A, type vector t, FLOP
vector f and parameter vector p of the cell. (d): Padding adjacency matrix A to 7 × 7 and vectors accordingly. Note that
the zero-padding is added at penultimate row and column, since the last row and column represents the output node. (e):
Vectors are broadcasted into matrix, and an element wise multiplication is made with the adjacency matrix to get the type
matrix, FLOP matrix and parameter matrix. (f): There are 9 cells in the network, thus producing 9 different FLOP matrices
and parameter matrices. All the cells share the same type matrix. We concatenate all the matrices to get the final 19× 7× 7
tensor.

2. An Example of Deriving Feature Tensor
In this section, we give an example of the process of

deriving feature tensor from cell-based search space NAS-
Bench-101. We use an architecture with 6 nodes in a cell,
and the process is shown in Fig. 1.

3. More Experiments on NAS-Bench-101
In this section, we conduct more experiments on NAS-

Bench-101 dataset to further demonstrate the usefulness of
the proposed ReNAS method.

In the following we give an intuitive representation of
the best architectures selected by the performance predictor
with different number of training samples as shown in Fig.
2. The best cell architecture searched by EA algorithm us-
ing proposed predictor trained with random selected train-
ing samples is shown in column 2 of Fig. 2. Note that the
rank-1 architecture in NAS-Bench-101 dataset cannot be se-
lected by the predictor even when using 90% of the training
data. This is because when using pairwise ranking based
loss function, there are n(n − 1)/2 training pairs and it is
inefficient to train them in a single batch. Thus, mini-batch
updating method is used and a single architecture is com-
pared with limited architectures in one epoch, which causes
the lack of global information about this architecture espe-
cially when the number of training samples is large. In fact,

the mini-batch size b is set to 1024 in the experiment, and it
is a compromise between effectiveness and efficiency.

This is the same reason that the performance of the ar-
chitecture found by the predictor trained with 90% dataset
is marginally better than that trained with 0.1% dataset.
Specifically, we divide the architectures into two parts. The
first part is the architectures trained with 0.1% and 1%
dataset, and the second part is the rest. Note that in the
first part the number of training sample is on the same or-
der of magnitude with the mini-batch size b, thus the global
information of a single model is easy to obtain and the per-
formance becomes better when there are more training data.
In the second part, the number of training sample is signifi-
cantly larger than b. On one hand, increasing the number of
samples helps training. On the other hand, the global rank-
ing information is harder to get. Thus, the performance is
marginally better when using more training samples.

Finally, there are some common characteristics among
these architectures. The first is that the distance between
input and output node is at most 2, which shows the signifi-
cance of skip-connection. The second is that 3×3 operation
appears in each architecture. Based on these observations,
we separate the NAS-Bench-101 dataset based on the dis-
tance between input node and output node, and whether the
3×3 operation is used. Some statistics are shown in Tab. 1.

It shows that the shorter the distance between input n-

3

Figure 2: The best architectures found by the predictor with different ratio of training samples.

Table 1: Statistics on NAS-Bench-101 dataset. ‘3 × 3’
refers to whether the model uses this operation. ‘Distance’
refers to the distance between input node and output node.
‘#model’ refers to the number of models. ‘Best acc’ refers
to the performance of the best architecture among ‘#model’
number of models on CIFAR-10 dataset. ‘Average acc’
refers to the average performance of ‘#model’ number of
models on CIFAR-10 dataset.

3× 3 Distance #model Best acc Average acc

yes

1 68552 94.32 91.97
2 153056 94.05 91.02
3 110863 93.68 89.31
4 27227 92.36 87.40
5 2516 90.54 86.51
6 211 88.87 84.91

no

1 12468 91.62 88.40
2 26282 90.81 86.69
3 17735 90.24 83.53
4 4282 88.95 80.20
5 400 88.16 78.84
6 32 86.71 74.93

Table 2: Predictors trained and evaluated with the whole
NAS-Bench-101 dataset and sub dataset. The experiments
are repeated 20 times to alleviate the randomness of the re-
sults.

Datasets accuracy(%) ranking(%)

whole dataset 93.95 ± 0.11 0.02
sub dataset 94.02 ± 0.14 0.01

ode and output node, the better the performance is. Be-
sides, 3× 3 operation helps the architecture to perform bet-
ter. Based on the observation above, we may form a bet-
ter search space of NAS-Bench-101 dataset by using only
68552 models with 3 × 3 operation and skip-connect be-
tween input node and output node. An experiment of train-
ing and evaluating performance predictor is conducted on
this sub search space and the results show that the predictor
trained and evaluated within the sub search space performs
better than the previous one as shown in Tab. 2. It shows
that a better search space helps to produce a better perfor-
mance predictor.

References
[1] Shivani Agarwal and Partha Niyogi. Generalization bounds

for ranking algorithms via algorithmic stability. Journal of
Machine Learning Research, 10(Feb):441–474, 2009. 1

4

