
Supplemental File to “Temporal Modulation Network for Controllable
Space-Time Video Super-Resolution”

Gang Xu1 Jun Xu2∗ Zhen Li1 Liang Wang3 Xing Sun4 Ming-Ming Cheng1

1 College of Computer Science, Nankai University, Tianjin, China
2 School of Statistics and Data Science, Nankai University, Tianjin, China

3 National Lab of Pattern Recognition, Institute of Automation, CAS, Beijing, China
4 Youtu Lab., Tencent, Shanghai, China

1. Content
In this supplemental file, we provide more details of our

Temporal Modulation Network (TMNet) for Space-Time
Video Super-Resolution (STVSR). Specifically, we provide

• the detailed network structure of our TMNet in §2;

• more details of our two-step training scheme in §3;

• flexibility of our TMNet on interpolating arbitrary
number of intermediate frames in §4;

• more visual comparisons of our TMNet with previous
STVSR methods in §5;

• how the one-stage training (instead of two-stage) influ-
ences our TMNet with TMB on STVSR in §6.

2. Detailed Network Structure of Our TMNet
Here, we illustrate the detailed network architecture of

our proposed TMNet in Figure 1.
We first extract the corresponding initial features FL =

{FL
2i−1}ni=1 via five residual blocks. Each residual block

contains a sequence of “Conv-ReLU-Conv” operations with
a skip connection. The Controllable Feature Interpolation
(CFI) is performed by the Pyramid, Cascading and De-
formable (PCD) module [9] modulated by our proposed
Temporal Modulation Block (TMB), which is illustrated in
Figure 2 of our main paper. The detailed structure of our
TMB block is shown in 2 (right). The proposed Locally-
temporal Feature Comparison (LFC) module is presented in
Figure 2 (left). The BDConvLSTM part is directly imple-
mented by employing the Bi-directional Deformable Con-
vLSTM network in [11]. The Upsampling part contains
operations of two “Convolutions (Conv), Pixel-Shuffle, and
LeakyReLU”, and one “Conv-LeakyReLU-Conv”.

∗Jun Xu is the corresponding author (email: nankaimathxu-
jun@gmail.com). This work is supported by National Natural Science
Foundation of China under Grant 62002176 and 61922046.

3. More Details of Two-step Training Scheme

Here, we provide more details of the two-step training
strategy for our TMNet.

In Step 1, we use the Vimeo-90K septuplet
dataset [12] as the training set, and the Vid4 [6], Vimeo-
Fast, Vimeo-Medium, and Vimeo-Slow sets as the eval-
uation sets. The Vimeo-90K septuplet, Vimeo-Fast,
Vimeo-Medium, and Vimeo-Slow datasets [12] consist of
7-frame video sequences, and the Vid4 [6] dataset contains
4 video clips, which contains 41, 34, 49 and 47 frames,
respectively. All the frames in the Vid4 dataset [6] are
split into sequences containing 7 continuous frames. We
downsample all the original HR frames to obtain the low-
resolution (LR) input frames via Bicubic interpolation, by
a factor of 4. When we train our TMNet, we initialize
the parameters of our TMNet by Kaiming initialization [4]
without pre-trained weights. We set t = 0.5 to get rid
of the TMB block and take the 1-st, 3-rd, 5-th, and 7-
th LR frames of every sequence as a low-frame-rate and
low-resolution input video to train our TMNet. Thus, with
the supervision of the corresponding 7-frame HR video se-
quences in the Vimeo-90K septuplet dataset [12], our
TMNet can learn to generate the 7-frame high-resolution
and high-frame-rate video sequence. It costs 8.71 days
(209.04 hours) to train our TMNet for 600,000 iterations.

In Step 2, we fix the weights of our main network
learned in Step 1 and only train our TMB block for
temporal modulation. Here, we train our TMNet on the
Adobe240fps dataset [8], which has 133 videos in 720P
with high-frame-rate (240fps). At first, We randomly
split the Adobe240fps dataset [8] into the train, val,
and test subsets with 100, 16, and 17 videos, respec-
tively. Then we split the frames from Adobe240fps train,
valid, and test sets into sequences of 7 continuous
frames. We first downsample the original HR frames with
the resolution of 1280×720 by a factor of 2 and take them
as the ground truths (GTs). Then we downsample the GTs

to create the corresponding LR input frames by a factor of
4. All the downsample operations are performed via Bicu-
bic interpolation. The 1-st and 7-th LR frames of each
video sequence are input to our TMNet. We set the tempo-
ral hyper-parameter t∈{ 16 ,

2
6 ,

3
6 ,

4
6 ,

5
6} to interpolate 5 inter-

mediate frames. Supervised by the corresponding 7-frame
HR video sequences in Adobe240fps test set as GTs, our
TMNet is able to flexibly interpolate intermediate frames
according to the temporal hyper-parameter. It takes 35.26
minutes to train our TMB block for 1,500 iterations on the
Adobe240fps dataset [8].

4. Flexible STVSR with Arbitrary Number of
Intermediate Frames

To show the flexibility of our TMNet for interpolating ar-
bitrary number of intermediate frames on STVSR, we pro-
vide the results generated by our TMNet between the in-
put two frames using multiple temporal hyper-parameter t.
As the motions in Adobe240fps [8] dataset are extremely
slow, we validate the flexibility of our TMNet on the Vimeo-
90K dataset [12]. To this end, we set the temporal hyper-
parameter t∈{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} to in-
terpolate 9 intermediate frames between any two adjacent
frames, though our TMNet is trained to interpolate 5 inter-
mediate frames between Frame 1 and Frame 7. The results
are shown in Figure 3. One can see that the interpolated
frames vary continuously with the change of t from 0.1 to
0.9. This demonstrates that our TMNet is feasible to gen-
erate a number of intermediate frames, which is different
from the training stage. That is, our TMNet is very flexible
on interpolating arbitrary number of intermediate frames,
according to the temporal hyper-parameter t ∈ (0, 1).

In Figure 4, we visualize the temporal consistency of our
TMNet and Zooming SlowMo [11], on the Clip 0277 of
“00006” from the Vimeo-Fast set [12]. Our TMNet inter-
polates 9 frames, while Zooming Slow-Mo [11] interpolates
1 frame, between Frames 1 and 3. To illustrate the tempo-
ral motion of the videos, we extract a 1D pixel vector over
the whole frames from the red line shown in the left figure,
and concatenate the 1D pixel vector into a 2D image. We
observe that our TMNet (Figure 4, upper right) produces
more consistent temporal motion trajectory than Zooming
SlowMo [11] (Figure 4, lower right), which suffers from
clear breaking variations. This demonstrates the superiority
of our TMNet on flexible frame interpolation for STVSR.

5. More Visual Comparisons on STVSR
On the Vid4 [6] and Vimeo-90K [8] datasets, we com-

pare our TMNet with previous one-stage and two-stage
STVSR methods. For one-stage STVSR methods, we com-
pare our TMNet with Zooming SlowMo [11] and STAR-
net [3]. For the two-stage STVSR methods, we per-

form video frame interpolation (VFI) by SuperSloMo [5],
DAIN [1], or SepConv [7], and perform video super-
resolution (VSR) by RCAN [13], RBPN [2], or EDVR [9].
We set t = 0.5 in our TMNet to generate the frame at the
middle moment of any two adjacent frames, which means
that the 1-st, 3-rd, 5-th, and 7-th LR frames of each clip in
Vimeo-90K are fed into our TMNet to reconstruct the 7 HR
frames. All these methods are trained on the Vimeo-90K
septuplet dataset [12], and evaluated on the Vimeo-90K
test set [12] and the Vid4 [8] dataset. The visualization
results of the comparison result are shown in Figures 5-8.

6. Training our TMNet in One-step
Although trained by a two-step scheme, our TMNet can

be directly trained with the proposed TMB block, result-
ing in a one-step training scheme. That is, in this one-step
scheme, all the parameters of our main TMNet and the TMB
block are optimized simultaneously without pre-training.
In our two-step scheme, the two sets of parameters in our
main TMNet and the TMB block are optimized separately
(first the main TMNet, and then the TMB block). Here, we
compare the performance of our TMNet trained with our
two-step and the one-step schemes, resulting in two variants
called TMNet-two (the original TMNet) and TMNet-one,
respectively. Both variants are trained on the Adobe240fps
train set [8] and evaluated on the Adobe240fps test
set [8]. As shown in Table 1, comparing with our TMNet-
two, the variant TMNet-one suffers from a performance
drop of 1.84dB in terms of PSNR, on the Adobe240fps
test set [8]. This demonstrates that our TMNet trained
in a one-step scheme fail to estimate the motion cues, and
interpolate the intermediate frames at an arbitrary moment
t ∈ (0, 1). The main reason is that, in initial training it-
erations, our TMNet with TMB trained from scratch could
not extract useful motion cues from videos, and thus fails to
optimize the parameters of our TMB block for meaningful
features at an arbitrary moment t.

Table 1: PSNR results of our TMNet trained in two-step
or one-step schemes on Adobe240fps test set [8].

Variant TMNet-one TMNet-two
PSNR (dB) 25.11 26.95

References
[1] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,

Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video
frame interpolation. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 3703–3712, 2019. 2, 7, 8, 9, 10

[2] Muhammad Haris, Gregory Shakhnarovich, and Norimichi
Ukita. Recurrent back-projection network for video super-
resolution. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3897–3906, 2019. 2, 7, 8, 9, 10

Input LR Frames

3×3 Conv

C_in=3, C_out=64, stride=1

3×3 Conv

C_in=3, C_out=64, stride=1

Leaky ReLULeaky ReLU

5 × Residual Block5 × Residual Block

tt tt

CFICFI CFICFI

LFCLFC LFCLFCLFCLFCLFCLFC LFCLFC

S
h

ared

BDConvLSTMBDConvLSTM

Upsample

Output HR Frames

F
eatu

re A
d
d
itio

n
 F

ram
e b

y
 F

ram
e

40 × Residual Block40 × Residual Block

Input Size

n ∗ 3 ∗ H ∗ W

Feature Size

(2n - 1) ∗ 64 ∗ H ∗ W

Feature Size

(2n - 1) ∗ 64 ∗ H ∗ W

Feature Size

(2n - 1) ∗ 64 ∗ H ∗ W

Feature Size

(2n - 1) ∗ 64 ∗ H ∗ W

Output Size

(2n - 1) ∗ 3 ∗ 4H ∗ 4W

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Conv

C_in=64, C_out=64, stride=1

ReLUReLU

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Conv

C_in=64, C_out=64, stride=1

Feature Size

1 ∗ 64 ∗ H ∗ W

Feature Size

1 ∗ 64 ∗ H ∗ W

3×3 Conv

C_in=64, C_out=256, stride=1

3×3 Conv

C_in=64, C_out=256, stride=1

Pixel Shuffle

upscale=2

Pixel Shuffle

upscale=2

Leaky ReLULeaky ReLU

3×3 Conv

C_in=64, C_out=256, stride=1

3×3 Conv

C_in=64, C_out=256, stride=1

Pixel Shuffle

upscale=2

Pixel Shuffle

upscale=2

Leaky ReLULeaky ReLU

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Conv

C_in=64, C_out=64, stride=1

Leaky ReLULeaky ReLU

3×3 Conv

C_in=64, C_out=3, stride=1

3×3 Conv

C_in=64, C_out=3, stride=1

Feature Size

1 ∗ 64 ∗ H ∗ W

Output Size

1 ∗ 3 ∗ 4H ∗ 4W

Upsample

 Residual Block

Figure 1: Main structure of our TMNet. The basic part of “Residual Block” and “Upsample” are illustrated on the right
side. n is the number of input frames. H and W denote the height and width of the image or feature map. C in and C out
denote the number of input and output channels, respectively.

[3] Muhammad Haris, Greg Shakhnarovich, and Norimichi
Ukita. Space-time-aware multi-resolution video enhance-
ment. In IEEE Conf. Comput. Vis. Pattern Recog., 2020. 2,
7, 8, 9, 10

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Int. Conf. Comput. Vis.,
pages 1026–1034, 2015. 1

[5] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik Learned-Miller, and Jan Kautz. Super slomo:

t

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Conv

C_in=64, C_out=64, stride=1

Leaky ReLULeaky ReLU

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Conv

C_in=64, C_out=64, stride=1

Leaky ReLULeaky ReLU

1×1 Conv

C_in=1, C_out=64, stride=1

1×1 Conv

C_in=1, C_out=64, stride=1

Leaky ReLULeaky ReLU

1×1 Conv

C_in=64, C_out=64, stride=1

1×1 Conv

C_in=64, C_out=64, stride=1

Leaky ReLULeaky ReLU

1×1 Conv

C_in=64, C_out=64, stride=1

1×1 Conv

C_in=64, C_out=64, stride=1

Leaky ReLULeaky ReLU

Feature Size

1 ∗ 64 ∗ H ∗ W

Feature Size

1 ∗ 64 ∗ H ∗ W

Feature Size

1 ∗ 1 ∗ 1 ∗ 1

Feature Size

1 ∗ 64 ∗ 1 ∗ 1

Feature Size

1 ∗ 64 ∗ H ∗ W

Temporal Modulation Block (TMB)

ConcatenationConcatenation

3×3 Conv

C_in=128, C_out=64, stride=1

3×3 Conv

C_in=128, C_out=64, stride=1

Leaky ReLULeaky ReLU

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Deformable Conv

C_in=64, C_out=64, stride=1

deformable_groups=8

3×3 Deformable Conv

C_in=64, C_out=64, stride=1

deformable_groups=8

ConcatenationConcatenation

Offset

ConcatenationConcatenation

3×3 Conv

C_in=128, C_out=64, stride=1

3×3 Conv

C_in=128, C_out=64, stride=1

Leaky ReLULeaky ReLU

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Conv

C_in=64, C_out=64, stride=1

3×3 Deformable Conv

C_in=64, C_out=64, stride=1

deformable_groups=8

3×3 Deformable Conv

C_in=64, C_out=64, stride=1

deformable_groups=8

Offset

1×1 Conv

C_in=192, C_out=192, stride=1

1×1 Conv

C_in=192, C_out=192, stride=1

Leaky ReLULeaky ReLU

1×1 Conv

C_in=192, C_out=192, stride=1

1×1 Conv

C_in=192, C_out=192, stride=1

Leaky ReLULeaky ReLU

1×1 Conv

C_in=192, C_out=192, stride=1

1×1 Conv

C_in=192, C_out=192, stride=1

Leaky ReLULeaky ReLU

1×1 Conv

C_in=192, C_out=64, stride=1

1×1 Conv

C_in=192, C_out=64, stride=1

Refined

Feature Size

1 ∗ 64 ∗ H ∗ W

Feature Size

1 ∗ 64 ∗ H ∗ W

Feature Size

1 ∗ 64 ∗ H ∗ W

Feature Size

1 ∗ 64 ∗ H ∗ W

Sliding window

Locally-temporal Feature Comparison (LFC) module

Leaky ReLULeaky ReLU Leaky ReLULeaky ReLU

Figure 2: Detailed structures of our Locally-temporal Feature Comparison (LFC) module (left) and Temporal Modu-
lation Block (TMB) (right). 2i− 1, 2i, and 2i+ 1 are the indexes of frames. H and W denote the height and width of the
image or feature map. C in and C out denote the number of input and output channels, respectively.

High quality estimation of multiple intermediate frames for
video interpolation. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 9000–9008, 2018. 2, 7, 8, 9, 10

[6] Ce Liu and Deqing Sun. A bayesian approach to adaptive
video super resolution. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 209–216. IEEE, 2011. 1, 2

[7] Simon Niklaus, Long Mai, and Feng Liu. Video frame in-
terpolation via adaptive separable convolution. In Int. Conf.
Comput. Vis., pages 261–270, 2017. 2, 7, 8, 9, 10

[8] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo
Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video
deblurring for hand-held cameras. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 1279–1288, 2017. 1, 2, 7

[9] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In IEEE Conf. Comput.
Vis. Pattern Recog. Worksh., pages 0–0, 2019. 1, 2, 7, 8, 9,
10

[10] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibil-
ity to structural similarity. IEEE Trans. Image Process.,
13(4):600–612, 2004. 7, 8, 9, 10

[11] Xiaoyu Xiang, Yapeng Tian, Yulun Zhang, Yun Fu, Jan P.
Allebach, and Chenliang Xu. Zooming slow-mo: Fast and
accurate one-stage space-time video super-resolution. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 3370–3379,
June 2020. 1, 2, 5, 6, 7, 8, 9, 10

[12] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. Int. J. Comput. Vis., 127(8):1106–1125, 2019. 1, 2, 5,
8, 9, 10

[13] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In Eur. Conf. Comput.
Vis., pages 286–301, 2018. 2, 7, 8, 9, 10

input

t = 0.0

t = 0.1

t = 0.2

t = 0.3

t = 0.4

t = 0.5

t = 0.6

t = 0.7

t = 0.8

t = 0.9

input

t = 1.0

Clip 0619 of “0004” in Vimeo-Fast Clip 0474 of “0035” in Vimeo-Fast Clip 0356 of “0006” in Vimeo-Fast

TMNet (Ours) Zooming Slow-Mo TMNet (Ours) Zooming Slow-Mo TMNet (Ours) Zooming Slow-Mo

Figure 3: Comparison of flexibility on STVSR by our TMNet (1-st, 3-rd, and 5-th columns) and Zooming Slow-Mo [11]
(2-nd, 4-th, and 6-th columns) on three video clips from the Vimeo-Fast dataset [12]. We show the intermediate frames
between the adjacent two frames according to the temporal hyper-parameter t∈{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

TMNet （Ours）

Zooming Slow-Mo

Clip 0277 of “00006” in Vimeo-Fast

Figure 4: Temporal consistency of our TMNet on STVSR. OUr TMNet interpolates 9 frames, while Zooming Slow-
Mo [11] interpolates 1 frame between Frames 1 and 3. We extract a 1D pixel vector over the whole frames from the red line
shown in the left figure, and concatenate the 1D pixel vector into a 2D image, which is horizontally scaled to better visualize
the temporal consistency of the videos. One can see that our TMNet (upper right) achieves clearly consistent temporal
interpolation, while Zooming Slow-Mo [11] (lower right) suffers from clear breaking variations.

LR HR

DAIN+EDVR

PSNR: 27.27dB SSIM: 0.7643

SepConv+EDVR

PSNR: 27.14dB SSIM: 0.7600

SuperSlomo+EDVR

PSNR: 24.50dB SSIM: 0.5412

DAIN+RBPN

PSNR: 27.25dB SSIM: 0.7637

SepConv+RBPN

PSNR: 27.13dB SSIM: 0.7579

SuperSlomo+RBPN

PSNR: 24.48dB SSIM: 0.5401

DAIN+RCAN

PSNR: 26.27dB SSIM: 0.6939

SepConv+RCAN

PSNR: 25.85dB SSIM: 0.6807

SuperSlomo+RCAN

PSNR: 24.47dB SSIM: 0.5362

STARnet

PSNR: 27.44dB SSIM: 0.7817

Zooming Slow-Mo

PSNR: 27.84dB SSIM: 0.8069

TMNet (Ours)

PSNR: 28.01dB SSIM: 0.8165

LR

DAIN+EDVR

HR

HR

SepConv+RBPN

SuperSlomo+RCAN

STARnet

SuperSlomo+RBPN

SepConv+EDVR

Zooming Slow-Mo

DAIN+RCAN

SuperSlomo+EDVR

DAIN+RBPN

SepConv+RCAN

TMNet (Ours)

Figure 5: Quantitative and qualitative results of our TMNet and other STVSR methods on Clip “city” in the Vid4
dataset [8]. For two-stage STVSR methods, we employ SuperSloMo [5], SepConv [7] or DAIN [1] for VFI and RCAN [13],
RBPN [2] or EDVR [9] for VSR. For one-stage STVSR methods, we compare our TMNet with STARnet [3] and Zooming
Slow-Mo [11]). The best results on PSNR (dB) and SSIM [10] are highlighted in bold.

LR HR

DAIN+EDVR

PSNR: 33.44dB SSIM: 0.9585

SepConv+EDVR

PSNR: 31.74dB SSIM: 0.9222

SuperSlomo+EDVR

PSNR: 30.89dB SSIM: 0.9136

DAIN+RBPN

PSNR: 33.33dB SSIM: 0.9571

SepConv+RBPN

PSNR: 31.65dB SSIM: 0.9201

SuperSlomo+RBPN

PSNR: 30.82dB SSIM: 0.9134

DAIN+RCAN

PSNR: 32.70dB SSIM: 0.9499

SepConv+RCAN

PSNR: 31.48dB SSIM: 0.9137

SuperSlomo+RCAN

PSNR: 30.76dB SSIM: 0.9118

STARnet

PSNR: 37.99dB SSIM: 0.9808

Zooming Slow-Mo

PSNR: 37.67dB SSIM: 0.9799

TMNet (Ours)

PSNR: 39.95dB SSIM: 0.9870

LR

DAIN+EDVR

HR

HR

SepConv+RBPN

SuperSlomo+RCAN

STARnet

SuperSlomo+RBPN

SepConv+EDVR

Zooming Slow-Mo

DAIN+RCAN

SuperSlomo+EDVR

DAIN+RBPN

SepConv+RCAN

TMNet (Ours)

Figure 6: Quantitative and qualitative results of our TMNet and other STVSR methods on Clip 0200 of “00026” in
Vimeo-Fast [12]. For two-stage STVSR methods, we employ SuperSloMo [5], SepConv [7] or DAIN [1] for VFI and
RCAN [13], RBPN [2] or EDVR [9] for VSR. For one-stage STVSR methods, we compare our TMNet with STARnet [3]
and Zooming Slow-Mo [11]). The best results on PSNR (dB) and SSIM [10] are highlighted in bold.

LR HR

DAIN+EDVR

PSNR: 33.56dB SSIM: 0.8932

SepConv+EDVR

PSNR: 33.47dB SSIM: 0.8930

SuperSlomo+EDVR

PSNR: 30.67dB SSIM: 0.8675

DAIN+RBPN

PSNR: 34.19dB SSIM: 0.9032

SepConv+RBPN

PSNR: 34.32dB SSIM: 0.9054

SuperSlomo+RBPN

PSNR: 31.67dB SSIM: 0.8763

DAIN+RCAN

PSNR: 33.56dB SSIM: 0.8895

SepConv+RCAN

PSNR: 33.28dB SSIM: 0.8969

SuperSlomo+RCAN

PSNR: 32.97dB SSIM: 0.8928

STARnet

PSNR: 34.11dB SSIM: 0.9021

Zooming Slow-Mo

PSNR: 34.01dB SSIM: 0.9080

TMNet (Ours)

PSNR: 36.17dB SSIM: 0.9438

LR

DAIN+EDVR

HR

HR

SepConv+RBPN

SuperSlomo+RCAN

STARnet

SuperSlomo+RBPN

SepConv+EDVR

Zooming Slow-Mo

DAIN+RCAN

SuperSlomo+EDVR

DAIN+RBPN

SepConv+RCAN

TMNet (Ours)

Figure 7: Quantitative and qualitative results of our TMNet and other STVSR methods on Clip 0723 of “00085” in
Vimeo-Medium [12]. For two-stage STVSR methods, we employ SuperSloMo [5], SepConv [7] or DAIN [1] for VFI and
RCAN [13], RBPN [2] or EDVR [9] for VSR. For one-stage STVSR methods, we compare our TMNet with STARnet [3]
and Zooming Slow-Mo [11]). The best results on PSNR (dB) and SSIM [10] are highlighted in bold.

LR HR

DAIN+EDVR

PSNR: 31.40dB SSIM: 0.9404

SepConv+EDVR

PSNR: 29.67dB SSIM: 0.9210

SuperSlomo+EDVR

PSNR: 26.47dB SSIM: 0.8513

DAIN+RBPN

PSNR: 31.10dB SSIM: 0.9346

SepConv+RBPN

PSNR: 29.47dB SSIM: 0.9182

SuperSlomo+RBPN

PSNR: 26.43dB SSIM: 0.8500

DAIN+RCAN

PSNR: 31.21dB SSIM: 0.9373

SepConv+RCAN

PSNR: 29.51dB SSIM: 0.9172

SuperSlomo+RCAN

PSNR: 26.49dB SSIM: 0.8492

STARnet

PSNR: 31.87dB SSIM: 0.9502

Zooming Slow-Mo

PSNR: 31.80dB SSIM: 0.9483

TMNet (Ours)

PSNR: 33.32dB SSIM: 0.9553

LR

DAIN+EDVR

HR

HR

SepConv+RBPN

SuperSlomo+RCAN

STARnet

SuperSlomo+RBPN

SepConv+EDVR

Zooming Slow-Mo

DAIN+RCAN

SuperSlomo+EDVR

DAIN+RBPN

SepConv+RCAN

TMNet (Ours)

Figure 8: Quantitative and qualitative results of our TMNet and other STVSR methods on Clip 0679 of “00084” in
Vimeo-Slow [12]. For two-stage STVSR methods, we employ SuperSloMo [5], SepConv [7] or DAIN [1] for VFI and
RCAN [13], RBPN [2] or EDVR [9] for VSR. For one-stage STVSR methods, we compare our TMNet with STARnet [3]
and Zooming Slow-Mo [11]). The best results on PSNR (dB) and SSIM [10] are highlighted in bold.

