ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search
— Supplementary Material —

1. Implementation Details
1.1. Spatial Search Space

We give implementation details of the spatial search
space of ViPNAS in this section.

Elastic Depth. Elastic depth allows dynamic numbers of
blocks in each stage. For example, the maximum number
of the blacks in stage S is 4 as shown in Figure 1. When
the depth D (D < 4) is selected, the first D blocks are
activated and the rest (4 — D) blocks are skipped. Note that
the minimum depth of any stage should be no less than 1
(D > 1), as the first block may change the spatial resolution
of the feature maps.

Elastic Width. Elastic width allows dynamic numbers
of output channels in each block. For a convolutional layer,
the shape of the filter is O x I x K x K given the input chan-
nels I, output channels O, and kernel size K x K. When
the output channel W (W < O) is selected, the filter is tai-
lored to the shape of W x I x K x K as shown in Figure 2.
We keep the first W out of O in the dimension of output
channels.

Elastic Kernel Size. Elastic kernel size allows dynamic
kernel sizes of convolutional layers in each block. The
weights of the kernels are shared. As shown in Figure 3,
we directly extract a K x K kernel filter from the centering
of the super-network kernel filter, when the kernel size K
is selected. This enables the weight sharing for kernels of
different sub-networks, which has been shown simple but
effective in our experiments. To avoid imbalance and bi-
ases of kernel extraction, we set the stride of the kernel size
choice as 2, keeping all the selected kernels center-aligned.

Elastic Group Number. Elastic group number allows
dynamic group numbers of convolutional layers in each
block. A convolutional layer has a filter with the shape
O x I x K x K given the input channels I, output channels
O and kernel size K x K. For example, when the group
number is 2 (as shown in Figure 5), two filters with shape
% X % x K x K are applied. In the figure, we concatenate the
two groups of filters in the dimension of output channels for
better illustration. We tailor the original filter to the shape
of O x é x K x K and keep the first half in the dimension
of input channels.
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Figure 1. Elastic Depth. The first D blocks are activated if the
depth D is selected in stage S.

Elastic Attention Module. Elastic attention module al-
lows the network to choose whether or not to use the at-
tention module in each block. As shown in Figure 4, the
attention module is used if attention module is selected. We
skip the attention module and identity mapping is applied if
attention module is not selected. The attention module will
keep both the spatial resolution and the feature channels the
same before and after.

1.2. Super-Network Design

In this section, we introduce the structure of our super-
network as well as the concrete search space designs for
each super-network. As the search space increases with
the exponential explosion, directly searching for block-level
network architecture is hard. In our experiments, we explic-
itly enforce the same width, kernel size, group number and
attention module for all the blocks in the same stage and
search for stage-wise optimum.

MobileNet-V3 [3]. Our MobileNet-V3 based super-
network consists of one convolutional layer, six stages, and
three deconvolutional layers (followed by one 1 x 1 convo-
lutional layer for output). Each stage contains a stack with
mobile blocks [3], which consists of one 1 x 1 expansion
convolution, a middle convolution and one 1 x 1 projection
convolution. We search for the kernel size and the group
number of the middle convolution in mobile blocks. The ex-
pansion convolution expands the input features to a higher-
dimensional feature space. We search the expansion ratio,
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Figure 2. Elastic Width. Given the input channels I and kernel size K x K, the first W output channels out of O is kept if the width W
is selected. The filter is tailored from the shape O x [ x K x KtoW x I x K x K.
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Figure 3. Elastic Kernel Size. The centering K x K kernel is
reserved if the kernel size K is selected.
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Figure 4. Elastic Attention Module. The attention module is ap-
plied if attention is selected, and is skipped if not.

which is similar to the elastic width. The detailed search
space is summarized in Table 1.

ResNet-50 [2]. Following SBL [6], our ResNet-50
based super-network consists of one convolutional layer,
four stages and three deconvolutional layers. Each block in
stages is Bottleneck [2], which contains one 1 x 1 convolu-
tion followed by a middle convolution and another 1 x 1
convolution. Similar to our MobileNet-V3 based super-
network design, we search for the kernel size and the group
number of the middle convolution in the Bottleneck. We
also search for whether to use a GC attention module [1]
in each block. Table 2 specifies the search space of our
ResNet-50 based super-network.

HRNet-W32[5]. We conduct experiments based on
HRNet-W32 to further demonstrate the effectiveness of our
proposed ViPNAS. Our HRNet-W32 based super-network
consists of two convolutional layers followed by several

Bottleneck blocks, three multi-resolution stages, and one
1 x 1 convolutional head for output. Each multi-resolution
stage contains parallel branches with different spatial res-
olution, and each branch includes several BasicBlock [2].
Both the convolutions in BasicBlock apply the same width,
kernel size, and group number. We search the configura-
tions of each stage and each branch for the best perfor-
mance. Table 3 displays the detailed search space of our
HRNet-W32 based super-network.

Our search space is discrete. Take ResNet-50 backbone
as an example, we set the search step to be 1 for depth, 16
for width, 2 for kernel size and 16 for group.

2. Qualitative Results

Figure 6 shows the qualitative results of our T-ViPNAS-
Res50 on four adjacent frames. S-ViPNet localizes human
poses on the first frame (key frame), and three different T-
ViPNets propagate poses on the following frames (non-key
frame). Our lightweight models keep the temporal con-
sistency and are robust to occlusion, motion blur and un-
usual illumination. ViPNAS achieves state-of-the-art accu-
racy with CPU real-time performance.
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Figure 5. Elastic Group Number. An example of Group=2 is illustrated in the figure. Given the input channels I, output channels O,
and kernel size K x K, the filter is tailored from the shape O x I x K x K to O X é x K x K. Two groups of filters with shape

% X é x K x K are applied and are concatenated in the dimension of output channels.

Table 1. MobileNet-V3 [3] based search space. [min, max] indicates the range of each search space. Expansion ratio indicates the feature
channel expansion rate in the middle of mobile blocks, and resolution indicates the ratio between the shapes of current features and those

of input images. Kernel size and group number of the middle convolution in mobile blocks are searched.

Stage Operator Depth Width Kernel Size | Group | Attention (SE [4]) | Expansion Ratio | Resolution

Conv - [16, 16] [3, 3] [1,1] - - 172

1 Mobile Block | [1, 1] [16, 16] [3, 3] [2, 16] [0, 1] [1, 1] 172

2 Mobile Block | [2, 4] [24, 24] [3,7] [9, 144] [0, 1] [3,6] 1/4

3 Mobile Block | [2, 4] [40, 40] [3,7] [15, 240] [0, 1] [3, 6] 1/8

4 Mobile Block | [2, 4] [80, 80] [3,7] [30, 480] [0, 1] [3, 6] 1/16

5 Mobile Block | [2,4] | [112, 112] [3,7] [42, 672] [0, 1] [3,6] 1/16

6 Mobile Block | [2,4] | [160, 160] [3,7] [60, 960] [0, 1] [3, 6] 1/32
Deconv - [256, 256] [4, 4] [32, 256] - - 1/4

Table 2. ResNet-50 [2] based search space. [min, max] indicates the range of each search space, and expansion ratio indicates the feature
channel expansion rate in the middle of Bottleneck. The first convolution and max pooling with stride 2 down-sample the spatial resolution

to 1/4 of the input image. Kernel size and group number of the middle convolution in Bottleneck are searched.

Stage | Operator | Depth Width Kernel Size | Group | Attention (GC [1]) | Expansion Ratio | Resolution
Conv+Pool - [32, 64] [7,7] [1,1] - - 1/4
1 Bottleneck | [3, 4] [64, 80] [3,5] [16, 64] [0, 1] [1, 1] 1/8
2 Bottleneck | [4,6] | [128, 160] [3,5] [16, 64] [0, 1] [1, 1] 1/8
3 Bottleneck | [6, 8] | [256, 320] [3, 5] [16, 64] [0, 1] [1, 1] 1/16
4 Bottleneck | [3,4] | [512, 640] [3,5] [16, 64] [0, 1] [1, 1] 1/32
Deconv - [64, 256] [4, 4] [16, 64] - - 1/4

Table 3. HRNet-W32 [5] based search space. HRNet includes parallel branches with different resolution in stages, which indicates the
ratio between the spatial shape of current features and input images. We search depth of each stage, and search width and attention of each
branch. Kernel size and group number of the middle convolution in Bottleneck and both the convolutions in BasicBlock are searched.

Stage | Depth | Branch | Operator Width Kernel Size | Group | Attention (SE [4]) | Resolution

- Conv [16, 64] [3,3] [1, 1] - 1/4

1 [2, 4] 1 Bottleneck | [16, 64] [3,3] [1, 16] [0, 1] 1/4
) [4. 4] 1 BasicBlock | [8, 32] [3, 3] [1,32] [0, 1] 1/4
’ 2 BasicBlock | [16, 64] [3,3] [1, 64] [0, 1] 1/8

1 BasicBlock | [8, 32] [3,3] [1,32] [0, 1] 1/4

3 [8, 16] 2 BasicBlock | [16, 64] [3, 3] [1, 64] [0, 1] 1/8
3 BasicBlock | [32, 128] [3, 3] [1, 128] [0, 1] 1/16

1 BasicBlock | [8, 32] [3, 3] [1,32] [0, 1] 1/4

4 8. 12] 2 BasicBlock | [16, 64] [3,3] [1, 64] [0, 1] 1/8
’ 3 BasicBlock | [32, 128] [3,3] [1,128] [0, 1] 1/16

4 BasicBlock | [64, 256] [3,3] [1,256] [0, 1] 1/32
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Figure 6. Qualitative results of T-ViPNAS-Res50 on four adjacent frames. S-ViPNet localizes human poses on the first frame, and three
different T-ViPNets propagate poses on the following frames. Our proposed ViPNAS is robust to occlusion, motion blur and unusual
illumination, and achieves state-of-art accuracy with CPU real-time performance.



