
Supplementary Material for “Learnable Companding Quantization for Accurate
Low-bit Neural Networks”

A. Relations between LCQ and the conven-
tional methods

We clarify the difference between our proposed method
and some similar conventional methods as follows: LSQ [4]
uses a learnable clipping function similar to our method,
however, they use a uniform quantization function. There-
fore, the quantization levels are not learnable. Since the
input distribution of DNNs is usually not uniform, non-
uniform quantization is better than uniform quantization to
reduce the quantization error. QIL [12] uses also the uni-
form quantization method that non-linearly transforms the
input (corresponding to our “compressing function”) and
then uniformly quantizes it, however, it does not apply the
expanding function as we proposed. Without the expand-
ing function, the quantization error is likely to be large.
APoT [16] uses non-uniform quantization, however, their
quantization levels are not learnable. DQ [25] learns non-
uniform quantization levels, however, their levels are opti-
mized with simple heuristic gradients, while our levels are
optimized with gradients based on the derivative of the com-
panding function. LQ-Nets [30] also learns non-uniform
quantization levels, however, it does not use gradients to
optimize the levels, unlike our method.

B. Training algorithm for LCQ

When training quantized DNNs with LCQ, we indepen-
dently apply the LCQ quantizer to the weights and activa-
tions for the convolutional or fully-connected layers. Al-
gorithm S1 summarizes the LCQ training procedure for a
convolutional layer as an example. Note that “∗” denotes
a convolutional operation, and that the LCQ parameters are
given independently on a layer-by-layer basis.

C. Validity of comparing LCQ and uniform
quantization methods

Our method assumes that multiplication is replaced by
memory access to LUTs during inference, and the speed of
the memory access depends on an efficient hardware accel-
erator design. Therefore, with respect to the comparison
between the proposed and conventional methods, it is diffi-

Algorithm S1 Training a convolutional layer with LCQ.

Input: full precision weights w and full precision in-
puts/activations a, and the corresponding parameters:
the clipping parameters (αw, αa), the companding pa-
rameters (θw, θa), the bit-widths (bw, ba) and the outer
bit-widths (b′w, b

′
a).

Output: updated parameters w, αw, αa, θw and θa.
1: Compute the quantized weights using Eq. (13) and

Eq. (14): wq ← Quantize(w,αw, θw, bw, b
′
w).

2: Compute the quantized activations using Eq. (14):
aq ← Quantize(a, αa, θa, ba, b

′
a).

3: Compute the convolution outputs: y ← wq ∗ aq .
4: Compute the loss L and the gradients ∂L

∂y .

5: Compute the gradients for the weights ∂L
∂y

∂y
∂w .

6: Compute the gradients for the clipping parameters
∂L
∂y

∂y
∂αa

and ∂L
∂y

∂y
∂αw

based on Eq. (12).
7: Compute the gradients for the companding parameters

∂L
∂y

∂y
∂θa

and ∂L
∂y

∂y
∂θw

based on Eq. (7) and Eq. (11).
8: Update w, αa, αw, θw and θa with the corresponding

gradients, respectively.

Table S1: Comparison of memory usage with/without LUT
in bytes. bw/ba indicates the bit-width for weights and ac-
tivations, respectively.

Model bw/ba w/ LUT w/o LUT Diff.

ResNet-18
(44.59 MB in FP32)

2/2 3.19 MB 3.19 MB 114 B
3/3 4.52 MB 4.52 MB 798 B
4/4 5.85 MB 5.85 MB 3990 B

ResNet-34
(83.15 MB in FP32)

2/2 5.63 MB 5.63 MB 210 B
3/3 8.16 MB 8.16 MB 1470 B
4/4 10.70 MB 10.69 MB 7350 B

ResNet-50
(97.46 MB in FP32)

2/2 7.73 MB 7.73 MB 312 B
3/3 10.52 MB 10.52 MB 2184 B
4/4 13.33 MB 13.32 MB 10920 B

MobileNet-V2
(13.37 MB in FP32) 4/4 2.41 MB 2.40 MB 10920 B

cult to evaluate theoretical metrics (e.g., FLOPs) for com-
putational efficiency, and also to evaluate the actual speedup
without dedicated hardware support. However, since there
is almost no difference between our method and conven-

1



tional methods in terms of memory usage, we compare them
in terms of accuracy at the same bit-widths. This accuracy
comparison is worthwhile because it allows us to evaluate
the model’s portability to memory-constrained devices.

We then show the additional memory usage by LUTs is
almost negligible. For the models and bit-widths used in
the experiments in this paper, Table S1 shows the memory
usage of the LCQ models (w/ LUT) and the uniform quan-
tization models (w/o LUT). Note that we set 8 as the outer
bit-width for both weights and activations. Clearly, there
is almost no difference in their memory usage for all the
combinations of the models and the bit-widths.

2


