
FP-NAS: Fast Probabilistic Neural Architecture Search
(Supplementary Material)

A. Index
The supplementary materials are organized as follows.

• We present the details of the searched FP-NAS models
and visualize them in Section B.

• Details of our training recipe, and comparisons with
those used by other methods are presented in Section C.

• Details of FP-NAS search spaces are presented in Sec-
tion D.

• A study on the supernet warmup is presented in Sec-
tion E.

• The derivation of gradients for updating architecture
parameters is shown in Section F.

B. Understanding FP-NAS Architectures
We use the proposed FP-NAS method to search for a

family of models in different sizes. The complete results are
shown in Table B.1.

We also visualize two representative FP-NAS models,
including FP-NAS-S1++ and FP-NAS-L2 model, in Fig B.1.
Compared with hand-crafted models, the searched architec-
tures select more non-uniform choices along kernel size,
non-linearity, feature channel and number of splits over MB-
Conv blocks.

For example, small kernel size 3 is more favored in the
early blocks while large kernel size 5 is more often chosen
in the later blocks. This is likely because large kernel size is
more computationally expensive and we can only afford to
use it in the later blocks where the spatial size of feature map
is small (e.g. 142, 72). Also in the later blocks, convolution
with large kernel size can more effectively capture the global
context.

We also find large choices of the number of splits in SA
block, such as 2 and 4, are more often used in the later
blocks. This is likely because high-level semantic features
only emerge in the later blocks, and attention with multiple
splits is more needed to attend to certain semantic features
relevant to the image content, compared with low-level fea-
tures in the early blocks where attention is less useful.

Architecture Input size FLOPS(M) Params(M) Distill Top-1 acc (%)

S1++ 1282 66 5.9 × 70.0
S2++ 1602 98 5.8 × 72.2
S3++ 1922 147 5.8 × 74.2
S4++ 2242 268 6.4 × 76.6

L0 2242 399 11.3 × 78.0

L1 2402 728 15.8
× 79.8
X 80.9

L2 2562 997 20.7
× 80.7
X 81.6

Table B.1: The family of FP-NAS models. All results are
obtained using one model and a single crop on ImageNet-1K.
Column Distill denotes whether model distillation [2] is used
to train the model.

Model LS AA EMA SD Top-1 acc(%)

FP-NAS-S1++
X × X × 69.8
X X × × 70.0
X X X × 70.0
X X X X 69.5

FP-NAS-S4++
X × X × 76.4
X X × × 76.4
X X X × 76.6
X X X X 76.4

FP-NAS-L0
X × X × 77.6
X X × × 77.5
X X X × 77.9
X X X X 78.0

FP-NAS-L2
X × X × 80.2
X X × × 79.2
X X X × 80.6
X X X X 80.7

Table C.2: ImageNet top-1 accuracy (%) of FP-NAS mod-
els trained with different training recipes. We start with
using LS only, and sequentially add AA, EMA and SD.

C. Training Recipes

When training FP-NAS models, we adopt label smooth-
ing [4] (LS), Auto-Augment [1] (AA), and Exponential
Model Averaging (EMA). We study the impact of the train-
ing recipe on the testing accuracy by training FP-NAS mod-
els under different training recipes. The results are shown in
Table C.2.

For EMA, it does not improve our smallest S1++ model,

3

5
4 1 0 1 1 0 1 1 1 1 1 2 2 4 4 2 2

Relu

Swish
S1++

1 0 1 0 0 1 1 1 1 1 1 1 1 1L2 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1

kernel size nonlinearity

Figure B.1: The architecture of FP-NAS-S1++ and FP-NAS-L2 model. MBConv blocks from different stage are separated
by a vertical bar, and each MBConv block is shown as a box. Box color encodes kernel size. Box height is proportional to
the feature channel. The solid and hatched box denotes ReLU and Swish nonlinearity, respectively. The number of splits
∈ {0, 1, 2, 4} in Split-Attention (SA) block is overlaid on top of each box. Choice 0 means SA block is not used, choice 1
means SE block is used, while choices 2 or 4 means SA block with 2 or 4 splits is used. For clarity, searched expansion rate is
not shown.

Model Size Method LS AA EMA SD

Small
MnasNet X × X ×
FBNetV2 X X × ×

FP-NAS (ours) X X X ×

Large
AtomNAS X × X ×

EfficientNet X X X X
FP-NAS (ours) X X X X

Table C.3: Comparing training recipe used by different
methods. We use the following short-hand notations. LS:
label smoothing [4], AA: auto-augmentation [1], EMA: expo-
nential model averaging [6], and SD: stochastic depth [3].

but can improve S4++ model by 0.2%. EMA is more ef-
fective on large models, including L0 and L2 models, and
improve their accuracy by 0.3% and 1.4%, respectively.

For SD, it actually reduces the accuracy of our small
models such as S1++ and S4++. Therefore, we do not use
SD to train our small models. On the other side, on our
large models, such as L0 and L2, SD slightly improves the
accuracy by 0.1%.

We also compare our training recipe with that from other
methods, and the results are shown in Table C.3. For small
models under consideration, including MnasNet [5] and FB-
NetV2 [7], they are different in whether AA and EMA are
used. Although FP-NAS-S++ models are trained with both
AA and EMA, the improvement by using either one is much
less significant compared with the improvement of FP-NAS-
S++ models over other models (See Table 8 in the paper).
For training large FP-NAS-L models, we use LS, AA, EMA
and SD, which are also used by EfficientNet.

Max Input (S2 × C) Operator Expansion Channel Repeat Stride

2242 × 3 conv 3× 3 - 16 1 2
1122 × 16 MBConv (1.5, 6.0, 0.75) (8, 32, 8) 1 1
1122 × 32 MBConv (1.5, 6.0, 0.75) (16, 32, 8) 2 2
562 × 32 MBConv (1.5, 6.0, 0.75) (16, 32, 8) 2 1
562 × 32 MBConv (1.5, 6.0, 0.75) (16, 56, 8) 2 2
282 × 56 MBConv (1.5, 6.0, 0.75) (16, 56, 8) 2 1
282 × 56 MBConv (1.5, 6.0, 0.75) (48, 96, 16) 4 2
142 × 96 MBConv (1.5, 6.0, 0.75) (48, 96, 16) 3 1
142 × 96 MBConv (1.5, 6.0, 0.75) (72, 136, 16) 3 1
142 × 136 MBConv (1.5, 6.0, 0.75) (112, 224, 16) 2 2
72 × 224 MBConv (1.5, 6.0, 0.75) (112, 224, 16) 2 1
72 × 224 MBConv (1.5, 6.0, 0.75) (168, 280, 16) 2 1
72 × 280 conv 1× 1 - 1984 1 1
72 × 1984 avgpool - - 1 1

1984 fc - 1000 1 -

Table D.4: The macro-architecture of FP-NAS-L0 search
space. It is used to search for FP-NAS-L0 architecture.

D. FP-NAS Search Spaces
In the Table 3, we introduce three FP-NAS search spaces

from L0 to L2. They share the same FP-NAS micro-
architecture, but have different macro-architectures, which
are shown in Table D.4, D.5, and D.6, respectively.

E. SuperNet Warmup
In our experiments, we fix the architecture hyper-

parameters while only updating the model weights at the
beginning of search for a number of epochs. This is to warm-
up the supernet by uniformly sampling architectures from
the initial distribution, and update model weights associ-
ated with them. Compared with randomly initialized model
weights, the updated weights lead to a better estimation of
the data likelihood P (y|X, ω,Ak) of the sampled architec-
tures {Ak} and therefore a better estimation of the gradients
for updating architecture parameters.

Max Input (S2 × C) Operator Expansion Channel Repeat Stride

2402 × 3 conv 3× 3 - 24 1 2
1202 × 24 MBConv (1.5, 6.0, 0.75) (16, 40, 8) 1 1
1202 × 40 MBConv (1.5, 6.0, 0.75) (24, 40, 8) 2 2
602 × 40 MBConv (1.5, 6.0, 0.75) (24, 40, 8) 2 1
602 × 40 MBConv (1.5, 6.0, 0.75) (24, 72, 8) 3 2
302 × 72 MBConv (1.5, 6.0, 0.75) (24, 72, 8) 2 1
302 × 72 MBConv (1.5, 6.0, 0.75) (64, 120, 16) 3 2
152 × 120 MBConv (1.5, 6.0, 0.75) (64, 120, 16) 3 1
152 × 120 MBConv (1.5, 6.0, 0.75) (88, 168, 16) 3 1
152 × 168 MBConv (1.5, 6.0, 0.75) (88, 168, 16) 3 1
152 × 168 MBConv (1.5, 6.0, 0.75) (136, 272, 16) 2 2
82 × 272 MBConv (1.5, 6.0, 0.75) (136, 272, 16) 2 1
82 × 272 MBConv (1.5, 6.0, 0.75) (208, 336, 16) 2 1
82 × 336 MBConv (1.5, 6.0, 0.75) (208, 336, 16) 2 1
82 × 336 conv 1× 1 - 1984 1 1
82 × 1984 avgpool - - 1 1

1984 fc - 1000 1 -

Table D.5: The macro-architecture of FP-NAS-L1 search
space. It is used to search for FP-NAS-L1 architecture.

Max Input (S2 × C) Operator Expansion Channel Repeat Stride

2562 × 3 conv 3× 3 - 24 1 2
1282 × 24 MBConv (1.5, 6.0, 0.75) (16, 40, 8) 1 1
1282 × 40 MBConv (1.5, 6.0, 0.75) (24, 40, 8) 2 2
642 × 40 MBConv (1.5, 6.0, 0.75) (24, 40, 8) 2 1
642 × 40 MBConv (1.5, 6.0, 0.75) (24, 72, 8) 3 2
322 × 72 MBConv (1.5, 6.0, 0.75) (24, 72, 8) 2 1
322 × 72 MBConv (1.5, 6.0, 0.75) (64, 120, 16) 3 2
162 × 120 MBConv (1.5, 6.0, 0.75) (64, 120, 16) 3 1
162 × 120 MBConv (1.5, 6.0, 0.75) (88, 168, 16) 3 1
162 × 168 MBConv (1.5, 6.0, 0.75) (88, 168, 16) 3 1
162 × 168 MBConv (1.5, 6.0, 0.75) (136, 272, 16) 2 2
82 × 272 MBConv (1.5, 6.0, 0.75) (136, 272, 16) 2 1
82 × 272 MBConv (1.5, 6.0, 0.75) (208, 336, 16) 2 1
82 × 336 MBConv (1.5, 6.0, 0.75) (208, 336, 16) 2 1
82 × 336 conv 1× 1 - 1984 1 1
82 × 1984 avgpool - - 1 1

1984 fc - 1000 1 -

Table D.6: The macro-architecture of FP-NAS-L2 search
space. It is used to search for FP-NAS-L2 architecture.

SuperNet FLOPS Top-1
Warmup (M) Accuracy (%)

× 59 67.8
X 58 68.6

Table E.7: Comparing searched architectures when su-
pernet warmup is used or not.

In a study where architecture is searched in FBNetV2-F
space, we use 315 epochs and compare the searched model
when the architecture parameters are freezed in the beginning
45 epochs or not. The results are shown in Table E.7. The
architecture searched without supernet warmup has inferior
accuracy, and thus we always warmup supernet to search
FP-NAS models.

F. Derivation of Gradients for Updating Archi-
tecture Parameters

In Eqn (7) of the paper, we presented how to compute
the gradient w.r.t architecture hyper-parameters α. The full
derivation is shown below. First, the cost-aware loss function
is defined as follows.

L(ω, α) = −log P (y|X, ω, α) + β log C(α) (1)

Then, the gradient w.r.t architecture parameters can be
derived as follows.

∇α L(ω, α) =
1

P (y|X, ω, α)

∫
P (y|X, ω,A) ∇α − P (A|α) dA

+ β
1

C(α)

∫
C(A) ∇αP (A|α) dA

=

∫
P (A|α)(P (y|X, ω,A)

P (y|X, ω, α) − β
C(A)

C(α)
) ∇α − log P (A|α) dA

≈ 1

K

K∑
k=1

(
P (y|X, ω,Ak)

P (y|X, ω, α) − β
C(Ak)

C(α)
) ∇α − logP (Ak|α)

≈
∑
k

mα
k ∇α − logP (Ak|α)

(2)

where mα
k = P (yval|Xval, ω, Ak)∑

k′ P (yval|Xval, ω, Ak′)
− β C(Ak)∑

k′ C(Ak′)
.

References
[1] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 113–123,
2019. 1, 2

[2] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[3] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In European
conference on computer vision, pages 646–661. Springer, 2016.
2

[4] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
2818–2826, 2016. 1, 2

[5] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnasnet:
Platform-aware neural architecture search for mobile. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2820–2828, 2019. 2

[6] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946, 2019. 2

[7] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, et al. Fbnetv2: Differentiable neural architecture
search for spatial and channel dimensions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12965–12974, 2020. 2

