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1. More Experimental Results

In this supplementary material, we evaluate the perfor-
mance of the proposed method in comparison with other
methods [4, 5, 7, 3, 2, 6, 1] qualitatively, as shown in Figs.
1,2,3.

2. More Ablation Studies

To show the effectiveness of our feature-alignment en-
coder, we use the standard convolution layers to replace the
deformable convolution layers. We extract the feature maps
from the central frame and the adjacent frame, and calcu-
late the error map between the central and adjacent feature
maps. If the extracted feature maps are not aligned, the fi-
nal outputs will have an overlapping issue. The feature er-
ror maps and derained outputs are shown in the second and
third rows of Fig. 4. We observe that the feature error map
is significantly reduced after using our feature-alignment
encoder. The derained output without alignment is more
blurry.

Our method is trained in a semi-supervised way. To
show the necessity of our unsupervised losses, we train our
method with only supervised losses in this ablation study.
In the first row and second column of Fig.4, we show the
rain-streak removal outputs with only supervised loss, and
compare it with the outputs with the full module in the
third column. We observe that most of the rain streaks are
successfully removed (although there are few streaks left,
see the left edge of the roof), but the output suffers from
a strong color shift. This color shifting problem is solved
after adding the self-learned consistency loss.

The third row and first column of Fig.4 shows the de-
rained output with only the supervised losses. Like existing
fully-supervised methods, this output suffers from the ambi-
guity between depth and water-droplet density. As a result,
the nearby wall in this output is over-saturated, while the
faraway trees are still foggy. Having included the depth in-
formation in our full module, the ambiguity is reduced and
both nearby and faraway objects are better recovered.

3. Training Data

We provide examples of images used to train our net-
works. Fig. 5 shows the pairs of synthetic rainy images, and
their groundtruths for the pairwise supervision. We render
the synthetic images using the physical model. Paired syn-
thetic rainstreak-free images and transmission maps for ren-
dering are also shown. Rendered rain fall rates are randomly
chosen within the range of 16 to 56 mm/hr. We use Gaus-
sian distribution for the distribution of rain-streaks. Testing
results on this synthetic rainy dataset is shown in Fig. 6
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Figure 1: Qualitative comparisons with the state of the art methods on real rain-streak images. Zoom-in for better visualiza-
tion.
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Figure 2: Qualitative comparisons with the state of the art methods on real rain-streak images.
tion.
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Figure 3: Qualitative comparisons with the state of the art methods on real rainy images.
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Figure 4: Ablation studies on our feature-alignment encoder.
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Figure 5: Examples of synthetic rainy image pairs used for supervised loss.
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Figure 6: Testing reuslts on our synthetic rainy images.



