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A. Proof of Proposition 1

Write the KL term in ELBO defined in Eq. 8 in the main
text as

D[qφ(ε, z|x,u)‖pθ(ε, z|u)]

=

∫∫
qφ(ε, z|x,u) log

qφ(ε, z|x,u)
pε(ε)pθ(z|u)

dεdz

=

∫∫
qφ(ε, z|x,u) log

qφ(ε, z|x,u)
pε(ε)

dεdz

+

∫∫
qφ(ε, z|x,u) log

qφ(ε, z|x,u)
pθ(z|u)

dεdz

−
∫∫

qφ(ε, z|x,u) log qφ(ε, z|x,u)dεdz,

The third term in above equation could be rewritten as a
constant. Details are shown as below.

−
∫∫

qφ(ε, z|x,u) log qφ(ε, z|x,u)dεdz

=−
∫∫

q(ε|x, u)δ(z = Cε) log q(ε|x, u)dεdz

−
∫∫

q(ε|x, u)δ(z = Cε) log δ(z = Cε)dεdz

=H(qφ(ε|x, u))− 0 = H(N (µφ(x, u), sI)))

=const, (1)

*Corresponding author.

In our method, we ignore this term in ELBO expression.
Then, based on Eq. 9 in the main text, we have∫∫

qφ(ε, z|x,u) log
qφ(ε, z|x,u)

pε(ε)
dεdz

=

∫
qφ(ε|x,u) log

qφ(ε|x,u)
pε(ε)

∫
δ(z = Cε)dzdε

+

∫
qφ(ε|x,u)

∫
δ(z = Cε) log δ(z = Cε))dzdε

=D[qφ(ε|x,u)‖pε(ε)] + 0

=D[qφ(ε|x,u)‖pε(ε)],

and∫∫
qφ(ε, z|x,u) log

qφ(ε, z|x,u)
pθ(z|u)

dεdz

=

∫
qφ(z|x,u) log

qφ(z|x,u)
pθ(z|u)

∫
δ(ε = C−1z)dεdz

+

∫
qφ(z|x,u)

∫
δ(ε = Cz) log δ(ε = C−1z)dεdz

=D[qφ(z|x,u)‖pθ(z|u)] + 0

=D[qφ(z|x,u)‖pθ(z|u)].

Adding up the above two terms leads to the desired form of
Proposition 1.

B. Identifiability
B.1. Proof of Theorem 1

The general logic of the proofing follows [11], but we
focus on both encoder and decoder. In our setting, we has
joint latent variables ε, z, and we prove identidfiabilty of
both of them.
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Another different setting from iVAE is that we consider a
slighter transformation matrix, since our additional observa-
tions u of each concepts align to each causal representations
z.

Sketch of proof:
We analyze the identifiability of ε starting with

pθ(x|u) = pθ̃(x|u). Then we define a new invertible matrix
L which contains additional observation ui in causal system,
and use it to prove that the learned T̃ is the transformation
of T. Step 2: We take the inference model into considera-
tion and analyze the identifiablity of the inference model by
relating the inference model to the generative model.

Details:
At the begining of proof, we consider a simple condi-

tion that the dimension of observation data d equals to the
dimension of latent variables n.

The distribution has two sufficient statistics, the mean
and variance of z, which are denoted by sufficient statistics
T(z) = (µ(z),σ(z)) = (T1,1(z1), . . . , Tn,2(zn)). We use
these notations for model identifiability analysis in Section
5. To simplify proof process, we absorb the injective func-
tions g(·) into generate model f(·) since mask layer will not
influence the quality of disentangled representation z.

pθ(x|u) = pθ̃(x|u),

⇒
∫∫

z,ε

pθ(x|z, ε)pθ(z, ε|u)dzdε

=

∫∫
z,ε

pθ̃(x|z, ε)pθ̃(z, ε|u)dzdε,

⇒
∫
z

pθ(x|z)pθ(z|u)dz =

∫∫
z

pθ̃(x|z)pθ̃(z|u)dz,

⇒
∫
x′
pθ(x|f−1(x′))pθ(f−1(x′)|u)|det(Jf−1(x′))|dx′

=

∫
x′
pθ(x|̃f−1(x′))pθ̃(f̃

−1(x′)|u)|det(Jf̃−1(x
′))|dx′.

(2)

In determining function f , there exist a Gaussian distri-
bution pξ(ξ) which has infinitesimal variance. Then, the
pθ(x|f−1(x′)) can be written as pξ(x−x′). As the assump-
tion (1) holds, this term is vanished. Then in our method,
there exists the following equation:

pθ(f
−1(x′)|u)|det(Jf−1(x′))| = pθ̃(f̃

−1(x′)|u)|det(Jf̃−1(x
′))|,

⇒ p̃θ(x) = p̃θ̃(x). (3)

Adopting the definition of multivariate Gaussian distribu-
tion, we define

λs(u) =

 λs1(u1)
. . .

λsn(un)

 . (4)

There exists the following equations:

log |det(Jf−1(x))| − logQ(f−1(x)) + logZ(u) (5)

+

2∑
s=1

Ts(f
−1(x))λs(u),

= log |det(Jh̃(x))| − log Q̃(f̃−1(x)) + log Z̃(u)

+

2∑
s=1

T̃s(f̃
−1(x))λ̃s(u), (6)

where Q denotes the base measure. In Gaussian distribution,
it is σ(z).

In learning process, Ã is restricted as DAG. Thus, the
C̃ exists which is full rank matrix. The item which is not
related to u in Eq. 6 are cancelled out [?].

2∑
s=1

Ts(f
−1(x))λs(u) =

2∑
s=1

T̃s(f̃
−1(x))λ̃s(u) + b,

(7)

where b is a vector related to u.
In our model, there exist a deterministic relationship C

between ε and z where C = (I −AT )−1. Thus we could
get equivalent of Eq. 7 as follows,

2∑
s=1

Ts(Ch(x))λs(u) =

2∑
s=1

T̃s(C̃h̃(x))λ̃s(u) + b‘,

(8)

where s denote the index of sufficient statistics of Gaussian
distributions, indexing the mean (1) and the variance (2).

By assuming that the additional observation ui is differ-
ent, it is guaranteed that coefficients of the observations for
different concepts are distinct. Thus, there exists an invert-
ible matrix corresponding to additional information u:

L =

[
λ1(u)

λ2(u)

]
. (9)

Since the assumption that ui 6= 0 holds, L is 2n× 2n invert-
ible and full rank diagonal matrix. Then, function of λ in
Eq. 7 and Eq. 8 are replcaed by Eq. 9, we could get:

LT(f−1(x)) = L̃T̃(f̃−1(x)) + b, (10)

T(f−1(x)) = B2T̃(f̃−1(x)) + b2, (11)

where

B2 =

 λ1,1(u1)
−1λ̃1,1(u1)

. . .
λn,2(un)λ̃n,2(un)

 .
(12)
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We replace f−1 with Ch and we could get the equations as
below:

LT(Ch(x)) = L̃T̃(C̃h̃(x))⇒ T(h(x)) = B1T̃(h̃(x)) + b1,
(13)

where B3 = CC̃−1 is invertible matrix which corresponds
to C and B1 = L−1B−13 L̃. The definition of L̃ on learning
model migrates the definition of L on ground truth.

Then we adopt the definitions following [11]. According
to the Lemma 3 in [11], we are able to pick out a pair (εi, ε2i )
such that, (T′i(zi),T

′
i(z

2
i )) are linearly independent. Then

concat the two points into a vector, and denote the Jacobian
matrix Q = [JT(ε), JT(ε

2)], and define Q̃ on T̃(h̃◦Cf(ε))
in the same manner. By differentiating Eq. 13, we get

Q = B1Q̃. (14)

Since the assumptiom (2) that Jacobian of f−1 is full rank
holds, it can prove that both Q and Q̃ are invertible matrix.
Thus from Eq. 14, B1 is invertible matrix. Using the same
way as shown in Eq. 14, it can prove that B2 is invertible
matrix.

Eq. 11 and Eq. 13 both hold. Combining the two results
supports the identifiability result in CausalVAE.

B.2. Extension of Definition 1

In most of scenarios, latent variable is a low dimensional
representation of the observation, since we are not interested
in all the information in observations.

Therefore, we usually have d > n. We called it
the reduction of dimension. We add auxiliary term as
λ(x) = {λ(u), λ′} In our model, Only n components of
the latent variable are modulated, and its density has the
form:

pθ(z|u) =
Q(z)

Z(u)
exp

n∑
i

Ti(zi)λi(ui) (15)

and the term e
∑d

n+1 T(zi)λi is simply absorbed into Q(z).
When we evaluate Eq. 6 by new definition (Eq. 15), the
dimension of p(z|u) is n, because the remaining part is
cancelled out.

Assume that pθ(x|u) equal to pθ̃(x|u). For all the obser-
vational pairs (x,u), let Jh denote the Jacobian matrix of the
encoder function. Following the definition in Theorem 2 in i
VAE [11], B will be indexed by 4 indicates (i, l, a, b), where
1 < i < d and 1 < l < s refer to the rows and 1 < a < d
and 1 < b < s refer to the columns. We define a following
equation:

v = C̃ ◦ h̃ ◦ f(z). (16)

The goal is to show that vi(z) is a function of only one zj .
We denote by vri :=

∂vi
∂zr

and vrti := ∂2vi
∂zr∂zt

. By differentiat-
ing Eq. 11 with respect to zs, we could get:

T ′i,l(zi) =

d∑
a=1

s∑
b=1

B2,(i,l,a,b)T̃
′
a,b(va(z))v

r
a(z). (17)

Lemma 1 (from Lemma 9 in Khemakhem et al. [?]): Con-
sider a distribution that follows a strongly exponential family.
Its sufficient statistic T̃ is differentiable almost surely. Then
T̃ ′i 6= 0 almost everywhere on R for all 1 ≤ i ≤ s.

For r > n, T ′i,l(zi) = 0, according to Lemma 1,
T̃ ′a,b(va(z)) 6= 0, since B2 is an invertible matrix, we can
conclude that vra(z) = 0 for all a < n and r > n. Therefore,
we can conclude that each of the first n components of v is
only a function of one different zj . Thus, when d > n, we
could get the same conclusion as Theorem 1.

B.3. Identifiability of Causal Graph

Consider the identifiability analysis in Appendix B.1. For
the framework of CausalVAE, in Causal Layer, the latent
code z is identified since B2 is a diagonal matrix which
corresponds to learnt z̃ and z. Since the true ε and learnt ε̃
are linearly related, B1, C and C̃ are in a linear equivalent
class. In other words, C or A is identifiable in Causal Layer
up to a linear equivalent class.

In our work, strict identifiability is guaranteed by the non-
linear mask layer. Details of the Mask Layer are shown in
Section 3.2 in main text. The Mask Layer uses non-linear
functions and additional supervision signal u (non-Gaussian)
to help the model to identify the true causal graph in a linear
equivalent class.

C. Implementation Details

We use one NVIDIA Tesla P40 GPU as our training and
inference device.

For the implementation of CausalVAE and other base-
lines, we extend z to matrix z ∈ Rn×k where n is the
number of concepts and k is the latent dimension of each zi.
The corresponding prior or conditional prior distributions
of CausalVAE and other baselines are also adjusted (this
means that we extend the multivariate Gaussian to the matrix
Gaussian).

The subdimensions k for each synthetic (pendulum, wa-
ter) experiments are set to be 4, and 32 for CelebA experi-
ments. The implementation of continuous DAG constraint
H(A) follows the code of [32] 1.
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Figure 1. Generate Policy of Pendulum Simulator

Figure 2. Generate Policy of Flow Simulator

C.1. Data Preprocessing

C.1.1 Sythetic Simulator

Fig. 1 shows our policy of generating synthetic Pendulum
data. The picture includes a pendulum. The angles of pendu-
lum and the light are changing overtime, and projection laws
are used to generate the shadows. Given the light POSITION
and pendulum ANGLE, we get the angles ϕ1 and ϕ2. Then
the system can calculate the shadow POSITION and LENGTH
using triangular functions. The causal graph of concepts is
shown in Fig. 4 (a). In Pendulum generator, the image size
is set to be 96 × 96 with 4 channels. We generate about
7k images (6k for training and 1k for inference), ϕ1 and
ϕ2 are ranged in around [−π4 ,

π
4 ], and they are generated

independently. For each image, we provide 4 labels, which
include light position, pendulum angle, shadow position and
shadow length. For light position, we use the value of center
of semicircle (Fig.1 1©) as supervision signal. For the pen-
dulum angle, we use the value of φ2 as supervision signal
(Fig. 1 2©). For shadow position and shadow length, we
use the length of Fig.1 3© and Fig.1 4© as supervision signal
respectively.

Fig. 2 presents our policy of generating synthetic Flow
data. Each image is of the 96× 96× 4 resolution, and con-

1https://github.com/fishmoon1234/DAG-GNN

sists of a cup of water and a ball. The original water level,
the ball size (Fig.2 1©) and the location of hole (Fig.2 3©) vary
over time. Given the ball size Fig. 2 and the original water
level, we determine the WATER HEIGHT (Fig.2 2©). Then we
generate WATER FLOW according to the Parabola law, where
we additionally introduce a noise from N (0, 0.01) to the
gravitational acceleration. The causal graph of concepts is
given in Fig. 4 (b). We consider four semantically meaning-
ful concepts, BALLS SIZE, WATER HEIGHT, HOLE POSITION
and WATER FLOW, whose supervised signals are given by
the ball’s diameter (Fig.1 1©), the length of Fig. 1 2©, the
length of Fig.1 3© and Fig.1 4© respectively. The sample
size is 8k with 6k for training and 2k for testing.

C.1.2 Data Preprocess of CelebA

CelebA dataset contains 20K human face images. We pre-
process the original dataset by following two steps:

(1) We divided the whole dataset into training dataset
85% and test dataset 15%.

(2) We only focus on facial features and resize the picture
to be squared (128× 128 with 3 channels).

C.2. Intervention Experiments

C.2.1 Synthetic

In synthetic experiments, we train the model on synthetic
data for 80 epochs, and use this model to generate latent
code of representations. The hyperparameters of baselines
are defined as default.

For CausalVAE, we set the α = 0.3 and (β, γ) = (1, 1).
We use N (u, |u|) as the condition prior pθ(z|u). In the
implementation of CausalVAE, |zmean| is used as the variance
of condition prior.

The details of the neural networks are shown in Table
1. We all follows the neural network design strategy of
Khemakhem et al. [?] to satisfy Theorem 1 assumption (ii).

C.2.2 CelebA

We also present the DO-experiments of CausalVAE and
CausalGAN. In the training of the models, we use face labels
(AGE, GENDER and BEARD).

For CausalVAE, we set the α = 0.3 and (β, γ) = (1, 1).
We use N (u, I) as the condition prior pθ(z|u). For all the
baseline, default hyperparameters and one common encoder
and decoder structure are employed. For CausalGAN, we
use the publicly available code2.

For all the VAE-based methods, mean and variance of the
distribution of the latent variable are learned during training,
and the latent code z are sampled from Conditional Gaussian
Distribution pθ(z|u). In all experiments, we rescale the

2https://github.com/mkocaoglu/CausalGAN
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variance of learned representation z by multiplying a factor
0.1 to the original one.

Training epoches for the model is set to be 80, and our
proposed CausalVAE has a pretrain step to learn causal graph
A, which takes 10 epochs.

The details of the neural networks are shown in Table 2.

C.3. The Pretrain Step for Causal Graph Learning

In our model, we need to learn the latent representation z
and causal graph A simultaneously, whose optimal solution
is not easy to find. Thus we adopt a pretrain stage to learn the
causal graph A in the Mask Layer. We adopt the augmented
Lagrangian to learn A in CausalVAE from the labels u in
Mask Layer first. During the pretrain process, we truncate
the gradient of other part of model and solve the optimization
problem in Eq. 19 to learn A.

The augmentation approach is widely used in causal dis-
covery method, like NOTEARS [28], DAG-GNN [32]. The
pretrain is a stage that learns the graph by optimizing the
following objective functions:

minimize lu = EqD‖u−ATu‖22
subject to H(A) = 0 (18)

Then, we define an augmented Lagrangian:

lpre = lu + λH(A) +
c

2
H2(A) (19)

where λ is the Lagrangian multiplier and c is the penalty.
The following policy is used to update the λ and c:

λs+1 = λs + csH(As) (20)

cs+1 =

{
cs = ηcs, if |H(As)| > γ|H(As−1)|
cs = cs, otherwise

where s is the iteration. In our experiments, we set η = 10
and γ = 1

4 .

D. Additional Experimental Results
In this section, we show more experimental results. Fig.

4 shows the causal graph among concepts in different dataset
respectively. We here show results including experiments an-
alyzing the properties of learned representation, intervening
results and the learning process of the causal graph.

D.1. The Property of Learned Representation

We test our method and baselines on both synthetic data
and benchmark human face data. In the previous section, we
already show the relationships between the learned represen-
tation z̃ and the target representation z (related by a linear
transformation formed as a diagonal matrix). In this section,
we visualize it by scatter plot.

One of the important aspect of the generative model is that
whether the learned representation aligns to the conditional
prior we set. Our conditional prior is generated by the true
label of each concept. The results show that the learned
representations align to the expected representations. In
figures, points are sampled from the joint distribution, and
each color corresponds to one dimension.

The additional observations (labels) of Pendulum dataset
and those of CelebA dataset are different. In Pendulum, the
labels are values within a fixed range The labels in CelebA
dataset are discrete (in {−1, 1}). Thus the scatter plots are
different.

The results show that the performance of our proposed
method is better than all the baselines, including the super-
vised method and unsupervised method.

D.2. The Learned Graph

We demonstrate the learning process of causal graph in
this section. Fig. 8 shows the graph learned process of
CelebA (BEARD). In this process, we initialize all the entries
in A as 0.5. After 5 epochs, the graph converges. We observe
an almost correct graph in this group of concepts.

D.3. Intervention Results

Intervene each concept

		𝑧# 	𝑧$ 	𝑧% 	𝑧&

		z# 		z$ 		z% 		𝑧&

After Mask Layer

Before Mask Layer

Figure 10. Intervention method

The intervention operations are as:

• For the learned model, we first put an random observed
image x into the encoder. In this process we could get
ε and z.

• Then for i-th concept, we fix the value of zi and
gi(Ai ◦ z) as constants.

• Finally, we put the new z into the decoder and get x′.

Fig. 3 (a) demonstrates the intervention results of Causal-
VAE on Flow dataset. We see that when we intervene on
the cause concept BALL SIZE, its child concepts WATER
HEIGHT and WATER FLOW change correspondingly. Simi-
larly, when the cause concept HOLE is intervened, its child
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Figure 3. The results of Intervention experiments on the Flow dataset. Each row shows the result of controlling the BALL SIZE, WATER

HEIGHT, HOLE, and WATER FLOW respectively. The bottom row is the original input image.

encoder decoder

4*96*96×900 fc. 1ELU concepts×( 4× 300 fc. 1ELU )
900×300 fc. 1ELU concepts× (300×300 fc. 1ELU)

300×2*concepts*k fc. concepts×(300× 1024 fc. 1ELU)
- concepts×(1024× 4*96*96 fc.)

Table 1. Network design of models trained on synthetic data.

concept WATER FLOW also changes. In contrast, intervening
on effect concept WATER HEIGHT does not influence the
causal concept BALL SIZE. Fig. 3(b) shows the results of
ConditionVAE on Flow. We observe that when we inter-
vene on BALL SIZE, WATER HEIGHT and WATER FLOW are
affected as expected. However when we intervene on the
effect concepts WATER HEIGHT and WATER FLOW, concept
BALL SIZE is also influenced, which makes no sense. In
general, the “do-intervention” of ConditionVAE performs
worse than CausalVAE. The results support that by simply
using a supervised model, one can not guarantee a causal
disentangled representation.

The Fig. 11 demonstrates the result of CausalVAE on
real world banchmark dataset CelebA (BEARD), with subfig-
ures (a) (b) (c) (d) showing the intervention experiments on
concepts of AGE, GENDER, BALD and BEARD respectively.
The interventions perform well that when we intervened the
cause concept GENDER, the BEARD changes correspond-
ingly. Similarly, when the cause concept AGE in intervened,
its child concept BALD also changes. In contrast, intervening
effect concept BEARD does not influence the causal concepts
GENDER and other unrelated concepts in Fig. 11 (d). Fig.
12 demonstrates the results of CausalGAN, with subfigures
(a) (b) (c) (d) showing the intervention experiments on con-
cepts CelebA (BEARD). We observe that when we intervene
GENDER, the BEARD are changed. But when we intervene
BEARD, concept GENDER is also changed in third line as

shown by Fig. 12 (d). In general, the ’do-intervention’ of
CausalGAN performs worse than CausalVAE.

The Fig. 13 demonstrates the result of CausalVAE on real
world banchmark dataset CelebA (SMILE), with subfigures
(a) (b) (c) (d) showing the intervention experiments on con-
cepts of GENDER, SMILE, MOUTH OPEN and EYES OPEN
respectively. The interventions perform well that when we
intervened the cause concept GENDER, not only the appear-
ance of GENDER but the eyes changed. When we intervened
the cause concept SMILE, not only the appearance of SMILE
but the MOUTH OPEN. In contrast, intervening effect con-
cept MOUTH OPEN does not influence the causal concepts
SMILE in Fig. 13 (d). Fig. 14 demonstrates the results of
CausalGAN, with subfigures (a) (b) (c) (d) showing the in-
tervention experiments on concepts CelebA (SMILE). We
find that when we control SMILE, the mouth is changed,
as shown in the second line of Fig. 14 (b). But we find
sometimes the control of SMILE influence other unrelated
concepts like GENDER (shown in first line of Fig. 14 (b)).
In this concepts group, CausalGAN also shows relatively
unstable intervention experiments compared to that of ours.
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encoder decoder

- (1×1 conv. 128 1LReLU(0.2), stride 1)
4×4 conv. 32 1LReLU (0.2), stride 2 (4×4 convtranspose. 64 1LReLU (0.2), stride 1)
4×4 conv. 64 1LReLU (0.2), stride 2 (4×4 convtranspose. 64 1LReLU (0.2), stride 2)
4×4 conv. 64 1LReLU(0.2), stride 2 (4×4 convtranspose. 32 1LReLU (0.2), stride 2)
4×4 conv. 64 1LReLU (0.2), stride 2 (4×4 convtranspose. 32 1LReLU (0.2), stride 2)
4×4 conv. 256 1LReLU (0.2), stride 2 (4×4 convtranspose. 32 1LReLU (0.2), stride 2)

1×1 conv. 3, stride 1 (4×4 convtranspose. 3 , stride 2)
Table 2. Network design of models trained on CelebA.

1

GENDER2

AGE

BALD3

BEARD4

1

SMILE2

GENDER

EYES	OPEN3

MOUTH	OPEN4

1

LIGHT	POSITION2

PENDULUM	ANGLE

SHADOW	LENGTH3

SHADOW	POSITION4

(a) Pendulum (c) CelebA Group 1 (d) CelebA Group 2

1

WATER	HEIGHT

2

BALL SIZE

HOLE

3

WATER	FLOW4

(b) Flow

Figure 4. Causal graphs of three dataset. (a) shows the causal graph in pendulum dataset. The concepts are PENDULUM ANGLE, light
POSITION, SHADOW POSITION and SHADOW LENGTH. (b) shows the causal graph in CelebA, on concepts AGE, GENDER and BEARD and
BALD. (c) shows the causal graph in CelebA, on concepts GENDER, SMILE, EYES OPEN and MOUTH OPEN.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
z

1.5
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0.5
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0.5

1.0

1.5
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nd
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h

exp = CausalVAE

1.5 1.0 0.5 0.0 0.5 1.0 1.5
z

exp = ConditionVAE

1.5 1.0 0.5 0.0 0.5 1.0 1.5
z

exp = beta-VAE

1.5 1.0 0.5 0.0 0.5 1.0 1.5
z

exp = CausalVAE-unsup

1.5 1.0 0.5 0.0 0.5 1.0 1.5
z

exp = LadderVAE

concept
0
1
2
3

Figure 5. The figure shows the alignment of ground truth p(z|u) and the learned latent factors q(z|x,u) on pendulum experiments. Although
ConditionVAE is also the supervised method, our proposed CausalVAE shows a better performance.

-1 1
ground truth

0.2

0.1

0.0

0.1

0.2

z

exp = CausalVAE

-1 1
ground truth

exp = ConditionVAE

-1 1
ground truth

exp = beta-VAE

-1 1
ground truth

exp = CausalVAE-unsup

-1 1
ground truth

exp = LadderVAE

concept
0
1
2
3

Figure 6. The figure shows the alignment of ground truth p(z|u) and the learned latent factors q(z|x,u) on CelebA for the concepts
(BEARD). The ground truth is a discrete distribution over {−1, 1}, and the color of the points indicates different dimensions. The factors
learned by CausalVAE show the best alignment among all.
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Figure 7. The figure shows the alignment between ground truth p(z|u) and the learned latent factors q(z|x,u) on CelebA for 5 methods
(CausalVAE, ConditionVAE, β-VAE, CausalVAE-unsup, LadderVAE from left to right). The ground truth is a distribution with mean taken
from {−1, 1}, and the color of the points indicates different dimensions. The factors learned by CausalVAE show the best alignment among
all. The concepts include: 1 GENDER; 2 SMILE; 3 EYES OPEN; 4 MOUTH OPEN.
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Figure 8. Learning process of causal graph A in CelebA (BEARD). The concepts include: 1 AGE; 2 GENDER; 3 BALD; 4 BEARD.
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Figure 9. Learning process of causal graph A in CelebA (SMILE). The concepts include: 1 GENDER; 2 SMILE; 3 EYES OPEN; 4 MOUTH

OPEN.
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(a) AGE (b) GENDER

(c) BALD (d) BEARD

Figure 11. Results of CausalVAE model on CelebA (BEARD). The captions of the subfigures describe the controlled factors. From left to
right, the pictures are results obtained by varying the value of the controlled factors.
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(a) AGE (b) GENDER

(c) BALD (d) BEARD

Figure 12. Results of CausalGAN [14] model on CelebA (BEARD). The captions of the subfigures describe the controlled factors. From left
to right, the pictures are results obtained by varying the value of the controlled factors.
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(a) GENDER (b) SMILE

(c) EYES OPEN (d) MOUTH OPEN

Figure 13. Results of CausalVAE model on CelebA (SMILE). The captions of the subfigures describe the controlled factors. From left to
right, the pictures are results obtained by varying the value of the controlled factors.
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(a) GENDER (b) SMILE

(c) EYES OPEN (d) MOUTH OPEN

Figure 14. Results of CausalGAN model on CelebA (SMILE). The captions of the subfigures describe the controlled factors. From left to
right, the pictures are results obtained by varying the value of the controlled factors.
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