Supplementary Materials

Figure 1. Visualization of given bounding-boxes (red box) and generated pseudo labels (green region) on LINEMOD.

1. Bounding-box Visualization

As shown in Fig. 1, we do not assume the given 2D bounding-boxes tightly cover object regions, which further relaxes the labeling requirements. For generating loose bounding-boxes, we first extract tight bounding-boxes from the ground-truth object masks. Then we randomly expand the size of tight bounding-boxes by $0\% \sim 15\%$ of the width and height.

2. Iterative Weakly-supervised Segmentation

In the weakly-supervised segmentation step, we iterate the pseudo-label generation and fine-tuning process by T = 5 steps. As seen in Table 1, the quality of pseudo segmentation labels progressively improves as the iteration step increases. The IoU score always converges after T = 3.

3. More Results

Qualitative Results on LINEMOD. Fig. 2 demonstrates our qualitative results on LINEMOD. The ensembled pre-

dictions are always better than the results predicted by a single scale (*i.e.*, either un-normalized scale or normalized scale).

Fine-tuning on HomebrewedDB. Following Self6D, we provide a self-supervised result by using 15% of real data from HomebrewedDB [2] without pose labels. As shown in Table 2, the self-supervised fine-tuning significantly improves the performance of our RGB based DSC-PoseNet on HomebrewedDB, marked as $Ours^{FT}$. Moreover, $Ours^{FT}$ also outperforms RGBD based Self6D. Fig. 3 further demonstrates our qualitative results on HomebrewedDB.

Evaluation on BOP [1] **protocols.** We also use the Average Recall (AR) used by BOP to evaluate our performance. The AR scores of our DSC-PoseNet on LINEMOD, OCC-LINEMOD and HomebrewedDB are 71.0%, 45.0% and 67.4%, respectively. For comparison, DPOD (synthetic) [5] achieves an inferior result 16.9% on OCC-LINEMOD without using depth and pose annotations.

T	Ape	Bvise	Cam	Can	Cat	Driller	Duck	Eggbox	Glue	Holep	Iron	Lamp	Phone	Mean
1	95.2	92.0	86.2	93.3	92.1	92.9	94.7	95.6	86.9	89.9	90.5	72.8	83.0	89.6
2	95.2	92.1	87.3	93.7	92.3	93.5	95.0	95.8	87.2	90.4	90.5	74.4	83.9	90.1
3	95.4	92.4	88.3	93.8	92.7	93.7	94.8	95.9	87.4	90.5	90.5	75.2	84.2	90.4
4	95.6	92.5	88.8	93.8	92.7	93.9	94.5	95.9	87.5	90.6	90.4	75.8	84.9	90.5
5 (Ours)	95.7	92.5	89.4	93.9	92.6	93.9	94.2	95.9	87.5	90.5	90.4	76.2	85.2	90.6

Table 1. The impact of different iteration step numbers (T) on our weakly-supervised segmentation on **LINEMOD**. We evaluate the Intersection over Union (IoU) scores between pseudo-labeled masks and ground-truth masks on the training split.

Figure 2. Qualitative results on **LINEMOD** dataset. *Green*: the ground truth pose. *Red*: un-normalized scale prediction. *Yellow*: normalized scale prediction. *Blue*: ensembled prediction by averaging the keypoints predicted at both the scales.

Method	DPOD [5]	RGB-base SSD+Ref. [3]	d Ours	Ours ^{FT}	RGBD Self6D [4]
Bvise Drill Phone	52.9 37.8 7.3	82.0 22.9 24.9	72.9 40.6 18.5	78.2 76.2 42.9	72.1 65.1 41.8
Mean	32.7	43.3	44.0	65.8	59.7

Table 2. Comparisons with state-of-the-art on **HomebrewedDB** dataset. Ours^{FT}: self-supervised fine-tuning by using 15% of real data from HomebrewedDB [2]

References

 Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, Anders GlentBuch, Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon Zabulis, et al. Bop: Benchmark for 6d object pose estimation. In *ECCV*, pages 19–34, 2018.

Figure 3. Qualitative results on HomebrewedDB dataset.

[2] Roman Kaskman, Sergey Zakharov, Ivan Shugurov, and Slo-

bodan Ilic. Homebreweddb: Rgb-d dataset for 6d pose estimation of 3d objects. In *ICCV Workshops*, 2019. 1, 2

- [3] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again. In *ICCV*, pages 1521– 1529, 2017. 2
- [4] Gu Wang, Fabian Manhardt, Jianzhun Shao, Xiangyang Ji, Nassir Navab, and Federico Tombari. Self6d: Self-supervised monocular 6d object pose estimation. In *ECCV*, 2020. 2
- [5] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Dpod: 6d pose object detector and refiner. In *ICCV*, 2019. 1, 2