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A. Experimental Details
A.1. Model Architecture and Training

Action Recognition on Epic-Kitchens. We adapt the state-
of-the-art temporal binding networks by Kazakos et al. [3].
This model extracts features from each of the three modal-
ities using an Inception network with Batch Normalization
[12]. The features from different modalities are ensembled
using feed-forward networks with ReLU activation prior to
temporal aggregation and prediction of a verb and noun
class. We obtain a pretrained model on clean data following
the data preprocessing, augmentation, and training steps of
Kazakos et al. [3]. We then augment the model with the
robust fusion strategy described in Section 3 of the main
text and perform training according to Algorithm 1 using
stochastic gradient descent with momentum 0.9 and weight
decay 5 x 10~* for ~120 epochs with a learning rate of
1x 1073,

Object Detection on KITTI. We adapt a single-shot detec-
tor based on YOLOvV2 [9] and YOLOvV3 [10] to the multi-
modal setting. The model extracts features from each of the
three modalities using a Darknet19 network [9]. The fea-
tures are fused using a 1 x 1 convolutional layer prior to
predicting bounding boxes and confidences using a YOLO
detector layer [10]. We obtain the Velodyne depth map by
projecting the Velodyne points to the 2D image plane us-
ing the calibration and projection matrices provided in the
dataset [2], followed by dilation with a 5 x 5 diamond kernel
and bilateral smoothing. We obtain the stereo depth image
using the pretrained PSMNet from [14]. All visual inputs
are resized to 1280 x 380 for training and evaluation. Dur-
ing training, we augment the visual inputs by adding a ran-
dom horizontal flip and a random shift that is at most one-
fifth of the original width and height of the image, and we
additionally augment the RGB image by randomly shifting
the hue, exposure, and saturation. We obtain a pretrained
multimodal model on unperturbed data in two steps: (i) we
pretrain single-shot detectors for each modality using the
same architecture, except for the fusion layer using stochas-
tic gradient descent with momentum 0.9 and weight decay
5 x 10~* for ~500 epochs with a learning rate of 1 x 1073,
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(ii) we train the fusion layer over the pretrained Darknet19
networks with the same optimization for ~120 epochs. We
then augment the model with the robust fusion strategy de-
scribed in Section 3 of the main text and perform training
according to Algorithm 1 using stochastic gradient descent
(SGD) with momentum 0.9, weight decay 5 x 10~%, and
gradient clip of 20 for ~20 epochs with a learning rate of
1x 1073

Sentiment Analysis on CMU-MOSI. For video input, we
use VGGFace2 [1] followed by one layer of multi-head at-
tention [ 13] and two layers of bi-directional LSTMs; for au-
dio, we apply the same architecture on the Mel-frequency
cepstral coefficients (MFCCs) of the audio signal instead
of VGGFace?2 outputs; for text, we apply the Transformer
model [13] on a 300 dimensional pretrained GloVe embed-
ding trained on Wikipedia from [8]. We first train unimodal
models using each of these three feature extractor followed
by a fully-connected layer. We then augment the model with
the robust fusion strategy described in Section 3 of the main
text and perform training according to Algorithm 1 using
stochastic gradient descent with momentum 0.9, weight de-
cay 5 X 1074, a learning rate of 1 x 1075, and trained for
40 epochs.

A.2. Adversarial Perturbations

The adversarial perturbations considered in our experi-
ments are white box adaptive attack, i.e., attacks are gener-
ated with full knowledge of fiopust-

Action Recognition on EPIC-Kitchens. We consider
single-source /., attacks on each of three modalities: vi-
sion, motion, and audio. To generate the perturbations, we
approximate the solution of Equation 1 of the main text us-
ing projected gradient descent (PGD) [7], taking £ to be
the sum of the cross-entropy losses from the verb and noun
classes. For vision and motion, we approximate the solution
with 10-step PGD with e = 8/256. For the audio spectro-
gram, we approximate the solution with 10-step PGD with
e=0.8.

Object Detection on KITTI. We consider single-source
£ perturbations on each of three visual modalities. To
generate the perturbations, we approximate the solution



Visual Motion Audio
Odd-one-out network Clean Perturbation Perturbation Perturbation
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action
Random 59.6 43.1 30.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Unaligned features 61.5 42.5 314 48.0 24.2 16.8 48.5 35.6 21.1 46.5 333 221
Aligned features 615 | 380 312 | 387 | 195 13.1 370 | 29.1 167 | 311 | 239 138
(Logits)

Table 1. We show the top-1 classification accuracy of our fusion model with different odd-one-out networks on action recognition on the
EPIC-Kitchens dataset under clean data and single-source adversarial perturbations on each modality. Higher is better.

Visual (RGB) Depth (Velo) Stereo Disparity
0Odd-one-out network Clean Perturbation Perturbation Perturbation
Car | Pedest. | Cyclist | Car | Pedest. | Cyclist | Car | Pedest. | Cyclist Car | Pedest. Cyclist
Random 90.1 79.0 84.3 17.9 7.6 7.6 1.8 19.8 28.1 1.1 18.4 30.2
Unaligned features 90.6 79.9 85.4 85.1 73.9 82.3 87.8 71.1 85.8 89.8 76.8 84.7
Aligned features 9.2 | 761 833 | 776 | 665 738 | 831 | 648 683 | 800 | 65.1 449
(Bounding Boxes)

Table 2. We show the average precision (at medium difficulty) of our fusion model with different odd-one-out networks on object detection
on the KITTI dataset under clean data and single-source adversarial perturbations on each modality. Higher is better.

Audio Video Text
Odd-one-out network Clean Perturbation Perturbation Perturbation
2-class | 7-class | 2-class 7-class 2-class | 7-class | 2-class | 7-class
Random 75.41 46.73 74.48 33.52.10 61.65 31.46 62.98 25.01
Unaligned features 82.03 50.89 73.18 42.06 69.94 38.20 66.13 30.20
Aligned features 80.13 48.26 71.95 39.74 66.47 3543 60.74 26.57

Table 3. We show the binary and 7-class accuracy of our fusion model with different odd-one-out networks on sentiment analysis on the
CMU-MOSI dataset under clean data and single-source adversarial perturbations on each modality. Higher is better.

of Equation 1 in the main text using 10-step PGD with
16/256, taking £ to be the YOLO loss [10]. The
loss consists of the cross-entropy losses of object and class
confidences as well as the mean-squared localization errors
summed over bounding box proposals.

Sentiment Analysis on CMU-MOSI. We consider single-
source attacks on each of three modalities: vision, audio,
and text. The adversarial perturbations approximate the so-
lution of Equation 1 in the main text, taking £ to be the
binary or 7-class cross entropy. For vision, we generate ¢,
perturbations with 10-step PGD with e = 8/256. For au-
dio, we generate the single-source /., perturbations with
10-step PGD with € = 0.8. For text, we adapted the word-
replacement attack with priority based on word saliency
[11] with an attack budget of one word per sentence.

E =

A.3. Evaluation Metrics

For each evaluation metric, we consider clean perfor-
mance (i.e., performance on unperturbed data) as well as
robust performance on data with single-source adversarial
perturbations. For robust performance, we report the evalu-
ation metric once for each attacked modality.

Action Recognition on EPIC-Kitchens. Models are eval-
uated based on their top-1 and top-5 classification accuracy
on the verb, noun, and action classes.

Object Detection on KITTI. We consider Average Preci-
sion (AP) on three object classes: cars, pedestrians, and cy-
clists. For the car class, true positives are bounding boxes
with Intersection over Union (IoU) > 0.7 with real boxes.
For the pedestrian and cyclist classes, true positives are

bounding boxes with IoU > 0.5 with real boxes.

Sentiment Analysis on CMU-MOSI. Models are evalu-
ated based on their binary classification accuracy (i.e., pre-
dicting whether the sentiment is positive or negative) as well
as their classification accuracy of 7 sentiment classes.

B. Robust performance with different odd-one-
out networks

In Table 5 of the main text, we show that the odd-one-
out network based on unaligned representations of different
features is more effective at detecting the perturbed modal-
ity than a random baseline as well as an odd-one-out net-
work based on aligned representations of the features. Sup-
plementary Tables 1, 2 and 3 show task performance of the
models using different odd-one-out networks. Overall, we
observe that task performance reflects the detection rates;
when the model’s odd-one-out network is more effective
at detecting the perturbed modality, it is more successful
at only allowing information from the unperturbed modal-
ities to pass through the feature fusion step, resulting in
better task performance under single-source perturbations.
Specifically, we show that the model with the odd-one-out
network based on unaligned representations of different fea-
tures is more robust than the baselines that use a random
odd-one-out network or an odd-one-out network based on
aligned representations of the features.



Fusi Cl Visual Motion Audio
usion ean Perturbation Perturbation Perturbation
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action
Oracle (Upper Bound) - - - 55.8 31.4 21.9 50.0 37.2 23.8 53.9 39.2 25.6
Concat Fusion 59.0 42.1 30.2 1.3 0.8 0.3 0.5 1.7 0.1 1.5 2.1 0.4
Mean Fusion 56.8 404 27.6 2.3 0.8 0.4 0.4 1.3 0.1 1.9 2.5 0.5
LEL+Robust [6] 61.2 43.1 30.5 54.5 30.4 21.1 51.4 36.6 22.7 51.5 37.3 239
Gating+Robust [5, 4] 60.9 43.0 30.6 56.9 32.5 22.7 52.0 39.9 25.2 55.6 39.4 26.3
Ours 61.5 42.5 314 58.0 339 24.5 53.2 39.2 25.6 56.6 39.5 27.1
A-Clean 2.5 0.3 1.2 55.7 33.1 24.1 52.7 37.5 25.5 54.7 37.0 26.6
A-Robust 0.3 -0.6 0.8 1.1 1.4 1.8 1.2 -0.7 0.4 1.0 0.1 0.8

Table 4. Unimodal transfer attack. Top-1 classification accuracy results on EPIC-Kitchens dataset under clean data and single-source
adversarial perturbations on each modality, where the adversarial perturbations are generated and transferred from unimodal models.

Higher is better.

proposed in [

Fusi Cl Visual Motion Audio
uston can Perturbation Perturbation Perturbation
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Oracle (Upper Bound) - - - 55.8 314 21.9 50.0 37.2 23.8 53.9 39.2 25.6
Concat Fusion 59.0 42.1 30.2 0.0 0.0 0.0 0.3 0.1 0.0 0.0 0.0 0.0
Mean Fusion 56.8 40.4 27.6 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
LEL+Robust [6] 55.8 36.7 23.9 9.4 7.2 3.1 11.3 17.8 5.1 6.2 12.3 3.1
Gating+Robust [5, 4] 57.1 39.1 26.6 18.8 12.6 6.7 323 25.7 14.2 16.3 13.0 7.6
Ours 60.2 42.5 31.0 53.6 29.7 20.8 48.7 35.6 22.7 50.7 36.4 23.5
A-Clean 1.2 0.4 0.8 53.5 29.7 20.8 48.4 35.5 22.7 50.7 36.4 23.5
A-Robust 3.1 34 44 34.8 17.1 14.1 16.4 9.9 8.5 34.4 23.4 15.9

Table 5. Feature-level attack. Top-1 classification accuracy results on EPIC-Kitchens dataset under clean data and single-source adver-
sarial perturbations on each modality, where the adversarial perturbations are generated at the feature-level, rather than the input level, as
]. Higher is better.

Fusi Cl Visual Motion Audio
uston ean Perturbation Perturbation Perturbation
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Oracle (Upper Bound) - - - 55.8 314 21.9 50.0 37.2 23.8 539 39.2 25.6
Concat Fusion 59.0 42.1 30.2 15.9 5.5 2.0 18.8 8.4 2.6 15.9 8.1 2.6
Mean Fusion 56.8 404 27.6 239 12.4 5.3 25.3 14.3 53 22.6 134 4.0
LEL+Robust [6] 62.3 423 31.0 31.6 23.1 6.7 38.5 322 14.8 31.5 28.7 9.6
Gating+Robust [5, 4] 61.9 44.7 31.9 35.7 25.9 9.3 45.9 36.2 19.5 38.2 28.8 11.8
Ours 60.8 435 31.3 45.1 32.1 17.5 51.5 38.0 24.5 56.6 40.0 277
A-Clean 1.8 14 1.1 21.2 19.7 12.2 26.2 23.7 19.2 34.0 26.6 23.7
A-Robust -1.5 -1.2 -0.6 9.4 6.2 8.2 5.6 1.8 5.0 18.4 11.2 15.9

Table 6. Untargeted attack. Top-1 classification accuracy results on EPIC-Kitchens dataset under clean data and single-source adversarial
perturbations on each modality, where the adversarial perturbations are generated to target the verb and noun class of a randomly sampled
clip from the dataset, rather than the real verb and noun class. Higher is better.

C. Other Types of Attacks

In the main text of the paper, we showed across three
benchmark tasks that standard multimodal models are not
robust to single-source adversaries (e.g., end-to-end, untar-
geted white box attacks on the entire multimodal model)
and subsequently proposed a defense strategy based on odd-
one-out learning for robust feature fusion. Here, we show
on the EPIC-Kitchens dataset that our results also hold for
other types of attacks: transfer attacks, targeted attacks, and
feature-level attacks [15].

Transfer attacks. We consider unimodal transfer attacks
on the multimodal models by (1) training a unimodal classi-
fier on top of pretrained feature extractors for each modality,
(2) generating a white-box untargeted attack from this uni-
modal model, (3) applying the perturbed input to the mul-

timodal model along with the two unperturbed inputs from
the other modalities. Note that the perturbed input is gen-
erated without knowledge of the fusion model and without
knowledge of the unperturbed inputs from other modalities.
From the performance results of different models in Supple-
mentary Table 4, we draw two conclusions. First, standard
multimodal models based on concatenation fusion (“Con-
cat Fusion”) or mean fusion (“Mean Fusion”) are also not
robust to these transfer attacks, which are weaker than end-
to-end white box attacks; in fact, the performance is close to
zero, which is no better than a unimodal model defending
against the same attack. In other words, an adversary can
successfully attack a single modality of a multimodal model
without knowledge of how features are fused between dif-
ferent modalities and without knowledge of the unperturbed
inputs from other modalities. Second, our approach out-



performs the standard models and existing state-of-the-art
robust methods on these types of attacks (see “A-Clean”,
“A-Robust”). We note, however, that all robust methods
perform reasonably well against transfer attacks, as they are
not adaptive attacks.

Feature-level attacks. Feature level attacks, as proposed
in [15], are a good alternative way to assess the robust-
ness of the fusion model, since here the attacker does not
use the vulnerability of the feature extractors to generate
the attack. To perform a feature-level attack, we perform a
white-box attack on the feature representation for a particu-
lar modality after it has been extracted by a feature extractor
g; and before it has been fused using h (or k). We consider
feature-level attacks with a maximum perturbation strength
of e = 3 for each modality. The performance results of
different models are shown in Supplementary Table 5. We
note that standard multimodal models are also vulnerable
to feature-level attacks; in fact, the performance is close to
zero, which is no better than a unimodal model defending
against the same attack. Additionally, our approach signif-
icantly outperforms the standard models and existing state-
of-the-art robust methods on these types of attacks (see “A-
Clean”, “A-Robust™).

Targeted attacks. To perform a targeted attack, we first
randomly select a verb and noun class from the dataset and
denote this target label as y; we denote the predicted verb
and noun for the input x as y. Subsequently, we generate a
white-box adversarial attack against the model by optimiz-
ing Equation (1) of the main text, taking

L(f(zi+6,x-),§) = —logPs(y = §; s + 0,x_).

The performance results of different models are shown in
Supplementary Table 6. Importantly, our approach also out-
performs the standard models and existing state-of-the-art
robust methods on these types of attacks (see “A-Clean”,
“A-Robust”). Note that the standard models appear to per-
form better than zero here; however, this is mainly because
there is a chance of sampling targeted verb and noun classes
that are the same as the real labels.

D. Clean performance of robust fusion strategy
on KITTI

Features that are trained on perturbed data are known to
perform significantly worse on unperturbed data [7]. In con-
trast, our approach is built on top of feature extractors pre-
trained on clean data and does not notably degrade clean
performance. In the main text, we show across all three
benchmarks that our performance on clean (unperturbed)
data is comparable with fusion models with standard train-
ing (see the “Clean” column of the “A-Clean” rows in Ta-
bles 2,3,4 of the main text). Clean performance seems
slightly degraded on the KITTI dataset, but these differ-

Fusion Clean Performance

Car Pedestrian Cyclist
Non-Robust Model | 928 £ 1.3 | 81.0+£4.7 | 849 +47
Ours 91.3+27 | 80.84+5.0 | 86.2+4.5

Table 7. Clean performance of our robust model v. standard multi-
modal model, trained for the same number of epochs. The uncer-
tainties shown are standard deviations computed over three splits
of the validation data.

Verb Noun Action
Vision 39.6/83.1 | 354/60.8 | 18.7/54.2
Motion 53.2/83.4 | 28.6/53.5 | 19.0/48.4
Audio 40.7/77.3) | 20.6/409 | 12.1/35.9
V+M 53.9/854 | 39.2/64.6 | 25.6/58.2
V+A 50.0/84.3 | 37.2/63.4 | 23.8/55.9
M+A 55.8/84.6 | 31.4/57.8 | 21.9/52.2

’ V+M+A ‘ 59.0/86.1 ‘ 42.1/66.5 ‘ 30.2/60.8 ‘
Table 8. EPIC-Kitchens Multimodal Benchmark Task. Top-1/
Top-5 classification accuracy of standard 1-modal, 2-modal, and 3-
modal models on the Epic-Kitchens verb, noun, and action recog-
nition task. Rows 2-4 show the performance of 1-modal models
based on individual modalities; rows 5-7 show the performance of
2-modal models on every pair of modalities, and row 8 shows the
performance of the 3-modal model on all of the modalities.

ences are not significant when standard deviations are taken
into account as shown in Supplementary Table 7.

E. Analysis of Multimodal Benchmark Tasks

In order to leverage consistency between modalities in
a multimodal task to perform robust fusion, there must
be shared or redundant information between them. Here,
we analyze the extent to which the modalities in EPIC-
Kitchens, KITTI, and CMU-MOSI are redundant, by con-
sidering the clean performance of 1-modal (unimodal), 2-
modal, and 3-modal models on the task. The results in
this section help shed light on the discussion of the odd-
one-out network performance in the main text. Specifically,
it is easier for the odd-one-out network to detect the per-
turbed modality for datasets such as KITTI where there is
large overlap in information between data modalities; on
the other hand, odd-one-out learning is more challenging on
datasets such as EPIC-Kitchens where there is a fair amount
of complementary information between data modalities.
EPIC-Kitchens Action Recognition. The results of our as-
sessment of the EPIC-Kitchens multimodal benchmark are
shown in Supplementary Table 8. We observe a trend of
diminishing returns on clean performance as we add more
modalities to the model, which indicates that there is redun-
dant information between the modalities— notice that the
drop of performance is relatively small from the 3-modal
models (row 8) to any of the 2-modal models (rows 5-7),
especially for the verb and noun classification tasks. How-



Car Pedestrian Cyclist
RGB 93.3/92.9/86.0 | 82.3/76.3/71.9 | 90.3/83.0/80.4
Velodyne 89.6/87.0/81.0 | 82.2/76.2/72.1 | 91.7/84.6/81.8
Stereo Depth | 93.9/88.3/81.6 | 79.8/71.7/67.8 | 83.8/80.4/75.7
R+V 93.3/92.8/86.2 | 85.0/80.5/76.3 | 95.1/87.4/85.1
R+S 96.1/93.2/86.5 | 84.6/79.3/75.0 | 90.3/85.3/82.7
V+S 93.5/90.4/83.8 | 87.0/80.1/76.0 | 93.4/86.4/84.0
] R+V+S \ 96.1/93.5/86.8 \ 85.8/81.5/77.0 \ 93.2/87.7/83.2 \

Table 9. Kitti Multimodal Benchmark Task. Average Precision of standard 1-modal, 2-modal, and 3-modal models on Easy / Medium /
Hard object detection as defined by the official KITTI evaluation server [2]. Rows 2-4 show the performance of 1-modal models based on
individual modalities; rows 5-7 show the performance of 2-modal models on every pair of modalities, and row 8 shows the performance of

the 3-modal model on all of the modalities.

Two-class | Seven class
Video 69.09 39.32
Audio 59.32 33.01
Text 75.23 46.64
V+A 69.82 40.28
V+T 78.64 49.10
A+T 73.36 47.84
V+A+T \ 79.82 49.69

Table 10. CMU-MOSI sentiment analysis Benchmark Task. 2-
class/7-class sentiment classification accuracy (%) of standard 1-
modal, 2-modal, and 3-modal models. Rows 2-4 show the perfor-
mance of 1-modal models based on individual modalities; rows
5-7 show the performance of 2-modal models on every pair of
modalities, and row 8 shows the performance of the 3-modal
model on all of the modalities.

ever, there is also a notable amount of complementary in-
formation between the modalities. For example, the visual
modality contains more information for noun classification:
the 1-modal vision model outperforms the 1-modal motion
and audio models in noun accuracy, and the drop from the 3-
modal model to the 2-modal model excluding vision yields
the largest drop in noun accuracy. Likewise, the motion
modality contains more information for verb classification:
the 1-modal motion model outperforms the 1-modal vision
and audio models in verb accuracy, and the drop from the 3-
modal model to the 2-modal model excluding motion yields
the largest drop in verb accuracy. Our findings are consis-
tent with the observations in [3].

KITTI 2D Object Detection. The results of our assessment
of the KITTI multimodal benchmark are shown in Sup-
plementary Table 9. Here, we observe that each modality
achieves high performance on the task individually. The im-
provement of clean performance when increasing the num-
ber of modalities from 1 (rows 2-4) to 3 (row 8) is rather
minimal. This demonstrates that the information between
these three modalities is highly redundant, and there is little
complementary information between the modalities.

CMU-MOSI Sentiment Analysis. The results of our as-

sessment of CMU-MOSI benchmark are shown in Supple-
mentary Table 10. In this task, text is the modality that car-
ries most information and adding video improves the per-
formance more significantly than adding audio. Compar-
ing row 8 which uses all three modalities and row 7 which
uses video and text, as well as comparing row 4 which uses
video and audio with row 1 which uses only video, one can
see that there exist strong redundancy between audio and
video.

F. Early Fusion vs. Late Fusion Models

In our preliminary experiments, we found that early fu-
sion models are notably less robust than late fusion meth-
ods, which motivated us to focus on late fusion approaches
in this work. Supplementary Table 11 shows our results
comparing early and late fusion approaches on action recog-
nition on the UCF-101 dataset. Here the input consists of
2-5 frames (which are treated as different views) and only
one of the frames is adversarially perturbed while the oth-
ers are clean An early fusion method that concatenates the
frames over their spatial dimensions before passing them
through a convolutional neural network is significantly less
robust than a late fusion network that processes the frames
individually and averages the output.

We also evaluated the robustness of transformers that
perform early fusion of video, audio, and text from the
MOSI dataset, and found that they performed notably worse
than late fusion models as shown in Supplementary Table
12.

One intuitive explanation for these results is the follow-
ing: in early fusion models, there are multiple early inter-
actions between attacked and clean modalities, so feature
extraction becomes strongly influenced by the attacked in-
put. In contrast, in late fusion models, feature extraction of
the clean modalities is mostly shielded from the attack.

G. Additional Tables

In the following, we provide additional results that were
deferred from the main text due to space constraints. Sup-



Number of Input Frames
Input Type 2 3 4 5
Early Fusion Model C.lean frames 69.7/89.3 | 70.2/89.1 | 68.3/87.2 | 70.9/87.4
Single-frame attack | 16.3/38.1 | 20.8/45.1 | 20.0/45.0 | 22.5/48.8
Late Fusion Model C.lean frames 72.4/89.0 | 73.0/90.0 | 74.0/89.6 | 73.5/90.5
Single-frame attack | 46.9/76.4 | 62.0/83.5 | 66.7/85.8 | 67.0/87.4

Table 11. Early fusion vs. late fusion robustness on UCF-101 action recognition. The early fusion model is significantly less robust
than the late fusion model under a single-frame perturbation. Top 1/ Top 5 classification accuracy is shown (higher is better). See text for
details.

Early Fusion (transformer) Model

Late Fusion Model

Audio | Video | Text
15.9 18.2 27.5
56.92 | 51.23 | 39.1

Table 12. Early fusion vs. late fusion robustness on two-class MOSI sentiment analysis. The early fusion model is significantly less
robust than the late fusion model, especially under audio and video perturbation.

plementary Table 13 provides top-1 and top-5 accuracy of
multimodal models on action recognition on EPIC-Kitchens
and supplement the result of Table 2 in the main text. Sup-
plementary Table 14 shows average precision performance
of multimodal models on easy/medium/hard object detec-
tion on the KITTI dataset and supplement the results of Ta-
ble 3 in the main text. Supplementary Table 15 shows end-
to-end adversarial training results on MOSI — the proposed
method outperforms adversarial training on clean input for
over 20% with small sacrifice on robust accuracy.
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Fusion Clean Visual Mo[ion‘ Audio»
Perturbation Perturbation Perturbation

Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Concat Fusion 59.0 (86.1) 42.1(66.5) 30.2 (60.8) 0.1(25.0) 0.0 (7.3) 0.0 (4.0) 0.2 (24.6) 0.0 (5.1) 0.0 (2.7) 0.1(21.2) 0.0 (6.8) 0.0 (3.5)
Mean Fusion 568 (85.9) 204 (66.1) 27.6 (59.7) 0.3 (58.1) 0.8 (15.8) 0.0 (11.8) 0.3 (64.2) 0.3 (14.3) 0.0 (12.0) 0.4 (48.0) 0.3 (16.9) 0.0 (12.0)
LEL+Robust [6] 61.2 (86.7) 43.1 (68.9) 30.5 (62.3) 22.3(76.3) 11.6 (37.2) 6.6 (34.9) 25.4 (78.6) 24.6 (52.3) 12.0 (46.5) 20.4 (77.6) 17.7 (47.5) 8.0 (43.2)
Gating+Robust [5, 1] 60.9 (87.6) 43.0 (68.7) 30.6 (62.8) 26.0 (77.9) 10.9 (42.0) 6.2 (39.0) 35.9 (83.6) 26.9 (58.3) 14.3(52.5) 21.3(79.9) 16.2 (51.4) 7.0 (47.2)

Ours 61.5 (88.2) 42.5(68.4) 31.4 (63.0) 48.0 (83.2) 24.2(53.2) 16.8 (48.9) 48.5 (85.2) 35.6 (63.8) 22.1(57.4) 46.5 (85.2) 33.3(62.3) 22.1(57.1)

Table 13. Top-1 (Top-5) classification accuracy results on EPIC-Kitchens dataset under clean data and single-source adversarial perturba-

tions on each modality. Higher is better. See Table 2 in main paper and accompanying details in text for details.

. Visual (RGB)
Fusion Clean Perturbation
Car Ped Cyc Car Ped Cyc
Concat Fusion 96.1/93.5/86.8 85.7/81.5/77.0 | 93.2/87.7/83.2 15.6/14.3/14.8 13.6/10.7/10.3 13.8/12.3/12.9
Mean Fusion 96.5/93.6/86.6 | 84.3/77.7/73.4 | 91.9/86.7/81.8 13.2/12.6/13.1 18.1/152/14.2 11.9/10.5/10.2
LEL+Robust [6] 80.5/71.4/673 | 69.0/64.2/61.3 | 75.7/80.0/75.3 3.71/3.95/4.62 16.9/15.4/14.3 16.4/139/13.2
Gating+Robust [5,4] | 90.6/89.4/82.8 81.5/74.7/72.6 | 929/84.6/81.8 | 67.3/57.2/53.1 62.0/54.2/50.7 | 68.6/56.0/53.1
Ours 95.6/90.6/83.9 | 84.5/79.9/75.7 | 90.4/854/80.6 | 89.6/85.1/78.9 | 80.5/73.9/69.8 | 87.9/82.3/77.6
. Depth (Velo) Stereo Disparity
Fusion Perturbation Perturbation
Car Ped Cyc Car Ped Cyce
Concat Fusion 3.43/1.58/1.59 11.3/11.1/11.4 | 872/8.82/822 | 7.37/3.57/3.44 | 8.08/4.64/436 | 9.13/7.23/7.72
Mean Fusion 6.77/3.16/2.90 13.7/129/12.8 10.1/7.88/8.07 | 6.88/3.08/2.73 | 9.17/8.03/8.81 12.2/7.77/7.28
LEL+Robust [6] 7.30/6.83/6.73 | 24.4/20.6/189 | 28.8/24.8/24.7 10.1/9.39/9.50 | 26.0/24.2/21.8 | 25.7/24.7/23.8
Gating+Robust [5,4] | 51.7/46.5/43.2 | 53.5/45.7/42.1 58.8/45.6/53.8 | 43.9/41.6/38.8 | 53.9/47.4/44.1 60.0/48.8/46.8
Ours 92.8/87.8/79.4 | 783/71.1/67.1 | 88.9/85.8/81.1 | 92.8/89.8/83.1 | 83.6/76.8/72.4 | 88.1/84.7/79.9

Table 14.

details.

Table 15. Binary and seven-class classification results (%) of end-to-end adversarial training and our method on MOSI. Higher is better.

Evaluation of Average Precision for 2D object detection (easy/medium/hard difficulty) on the KITTI dataset under clean data and
single-source adversarial perturbations on each modality. Higher is better. See Table 3 in main paper and accompanying details in text for

Fusion Clean Audio ] Video ] Text ]
Perturbation Perturbation Perturbation
2-class 7-class 2-class 7-class 2-class 7-class 2-class | 7-class
Adpversarial training 61.23 36.02 74.38 42.13 70.34 39.28 69.94 3245
Ours 82.03 50.89 73.18 42.06 69.94 38.20 66.13 30.20




