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Figure 1: Overview of common attention block. I1, I2 de-
note the inputs of our common attention block. ⊗ denotes
matrix multiplication and ⊕ is element-wise sum. The main
idea of the common attention block is to align the feature I2
to the feature I1.

1. Detailed architecture

Overview of the common attention block. The struc-
ture of the common attention block is illustrated in Figure 1.
The main idea of the common attention block is to align
the feature I2 to the feature I1. In our model, the common
block plays two important roles: i) it aligns each query clip
feature with its previous clip features to contain more motion
information, ii) it fuses the support feature into the query
clip feature based on the joint commonality.

Spatio-temporal positional encoding. In the encoder
layers, both support and query branches are associated with
corresponding spatio-temporal positions of video features.
We generalize the original positional encoding [1] to the 3D
case. For all the spatio-temporal coordinates of each embed-
ding, we independently use C

3 sine and cosine functions with
different frequencies. We then concatenate them to get the
final C channel positional encoding.

Encoder	self-attention	maps	for	the	five	support	videos

Encoder	self-attention	maps	for	the	query	video

Decoder	attention	maps	for	the	query	video

Figure 2: Attention maps. We show support and query en-
coder self-attention maps (top and middle), as well as query
decoder attention maps (bottom). • denotes reference point
for self-attention map. The encoder makes individual ac-
tions stand out in the support and query videos. The decoder
highlights the common actions in the query video.

Visualization. We visualize the attention maps in Fig-
ure 2 to better understand our model. The encoder self-
attention maps are from the last encoder layer of a trained
model. The decoder attention maps are the normalized at-
tention score maps in the common attention block of the
decoder. The figure shows that the encoder can make individ-
ual actions stand out in the support and query videos, which
boosts commonality extraction for the decoder. On the basis
of the encoder, the decoder is able to highlight the common
actions in the query video.

2. Additional ablations

Benefit of query clip feature alignment. We demon-
strate the benefit of query clip feature alignment with the
common attention block on the spatio-temporal localization
performance on Common-AVA in Figure 3. The neighbor
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Figure 3: Benefit of query clip feature alignment. Propa-
gating the spatio-temporal information from previous clips
of the query video into the current query clip by using the
common attention block is beneficial to the common local-
ization on common-AVA. Progressively aligning previous
query clip features into the current query clip leads to the
best results.

Support videos in training Support videos in evaluation

All videos are 5 frames All videos are 5 frames 22.2
The videos are 5,10,15,20,25 frames 23.8

All videos are 25 frames All videos are 25 frames 28.1
The videos are 5,10,15,20,25 frames 25.0

The videos are 5,10,15,20,25 frames The videos are 5,10,15,20,25 frames 26.1

Table 1: Effect of variable-length support videos on five-
shot Common-AVA. The results demonstrate our flexibility.

alignment is aligns the current query clip with its single previ-
ous neighbor query clip feature, while the progressive align-
ment aligns with all previous clip features. So the neighbor
alignment lets each query clip contain the spatio-temporal
information of its previous neighbor clip. And the progres-
sive alignment propagates long-term motion information of
previous clips to the current query clip. The neighbor align-
ment notably improves the performance and the progressive
alignment causes a further performance increase.

Effect of variable-length support videos. We verify our
method can handle support videos of varying lengths in
Table 1. This is indeed the case, especially when our model
is also trained on videos of variable length.

Qualitative results. Some extra qualitative results for
common action localization in time and space, and per pixel

are shown in Figure 4.

3. Segmentation
The mask-head. Inspired by the extension to segmenta-

tion in Carion et al. [2], we localize the common action per
pixel by simply adding a mask-head upon the decoder out-
puts, which predicts a binary mask for each of the predicted
boxes, see Figure 5. It takes as input the output embeddings
from the few-shot transformer decoder and computes multi-
head attention weights of this embedding over the fused
feature of the support and query branches from the encoder,
generating attention maps per box in a small resolution. A
feature pyramid network architecture [3] is used to increase
the resolution and make the final prediction with the supervi-
sion of DICE/F-1 loss [5] and Focal loss [4].

Common-A2D. The videos in the dataset have an average
length of 136 frames where three to five frames for each
video are labeled with dense pixel-level annotations. The
selected frames are evenly distributed over a video. There
are 2932 videos in the training subset, and 850 videos in the
validation and testing subsets. For the training subset, we
divide each query video into clips according to the labeled
frames, to make each query clip contain one pixel-level
annotated frame. Then we sample the query clips to a length
of 25 frames. For the validation and testing subsets, we
divide each query video into clips of 25 frames long without
sampling.

Training details. The mask-head is trained jointly with
the whole model for 100 epochs. During inference we first
filter out the detection with a confidence below 85% or back-
ground label, then compute the per-pixel argmax to deter-
mine whether each pixel is foreground.
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Figure 4: Qualitative result under one-shot (blue) and five-shot (red) settings. In the upper part are 2 sets of 5 support videos,
where the leftmost video in each set is also used in the one-shot setting. For the left example of common action localization in
time and space, with one support video, we can find the common action tube in most clips of the query video, except for the
few clips where we wrongly include an extra subject in our prediction. When we use five support videos, our bounding box is
refined to exclude the redundant subject. For the right example of common action localization per pixel, with one support
video we can localize the common action per pixel, and we present more precise localization with five support videos.
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Figure 5: Structure of the mask-head. M denotes the head number in the multi head attention, W ′, H ′ denote the width and
height of the final masks. A binary mask is generated in parallel for each predicted box, then the masks are merged.


