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A. Examine The Vital Blocks in NAS SuperNet

The NAS search space is an extended formulation of
residual network [2]. For each SuperBlock [4] in the NAS
SuperNet S, it contains several operations parallel to the
identity mapping (e.g., O = 9 for FBNet [7] and one of them
is zero-mapping). NAS searches for the most appropriate
operation for each block and constructs the searched architec-
ture by stacking them. The identity mapping is served as the
shortcut for some SuperBlocks. Thus, we could also divide
all the SuperBlocks into “vital” and “non-vital” categories.
The transformations in the vital SuperBlocks are to learn the
F , while the transformations in non-vital SuperBlocks are
to learn the residual.

We further examine that the vital blocks play a more im-
portant role in the NAS search space by experiments. We
could not train all the models (e.g., 922 for FBNet) in the
search space. Thus we train a subset (504 models) on the
ImageNet dataset to verify the hypothesis of vital blocks.
The backbone is a shallower FBNet [7]. We aim to find
which blocks would affect most on the final performance,
in other words, which blocks are more sensitive to the fi-
nal performance. If block l is to be evaluated, we fix all
the other blocks with a pre-defined operation and enumer-
ate block l with seven different operations (e.g., block3
in Figure 1(a)). Then we report the mean/std. We exam-
ine six different backbones, where all the blocks are sepa-
rately ir_k{3, 5}_e{1, 3, 6} [7]1. All the 12 blocks in the
middle are separately evaluated, and there are a total of
12× 7× 6 = 504 models.

The statistics are shown in Figure 1. While other blocks
are fixed, changing the transformations of vital blocks has
the greatest impact on the final accuracy, which is reflected
in greatly changing the mean or std. This phenomenon is

∗Corresponding author.
1The inverted residual (ir) block [3] with kernel size k and expansion e.

especially obvious for experiments ir_k3_e6 and ir_k5_e6,
by changing the operations of vital blocks, the averaged
accuracies decrease by a large margin, and the standard
deviations also increase significantly. Both analyses and
experiments verify that vital blocks are more important to
the final accuracy. Thus the vital blocks should be searched
with a higher priority. Denoting S as the NAS SuperNet, We
use Svital to represent the minimal SuperNet which contains
all the vital SuperBlocks.

Table 1. Network definition for the sensitivity property experiments.
The ’Super’ denotes that this layer will be used to evaluate the
mean value and standard deviation while other layers are fixed.
In FBNet, each stage is constructed by 4 SuperBlocks, the first
SuperBlock in each stage is vital, and the rest three of them are
non-vital. In our experiments, we use 2 SuperBlocks in each stage,
the first SuperBlock is vital and the next SuperBlock is non-vital.

Layer Type Out Stride vital

conv1 Conv 16 2 -

layer1_1 Super 16 1 non-vital

layer2_1 Super 24 2 vital
layer2_2 Super 24 1 non-vital

layer3_1 Super 32 2 vital
layer3_2 Super 32 1 non-vital

layer4_1 Super 64 2 vital
layer4_2 Super 64 1 non-vital

layer5_1 Super 112 1 vital
layer5_2 Super 112 1 non-vital

layer6_1 Super 184 2 vital
layer6_2 Super 184 1 non-vital

layer7_1 Super 352 1 vital

conv1 Conv 1984 1 -

avg Avg Pool - - -
fc Fc 100 - -



(a) Sensitivity property experiments
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Figure 1. The diagram of the block sensitivity experiments. Figure 1(b) to Figure 1(g) show the mean value and standard deviation of every
block. The red histograms and the green histograms are the mean/std for the vital and non-vital blocks, respectively. A block with larger std
means this block is more sensitive to the final accuracy by enumerating operations. In general, the vital blocks (red) are more sensitive to the
final accuracy.

B. The Analysis of MobileNetV2
In this section, we analyze the MobileNetV2 [3] and

MnasNet [5] which are utilized to measure the block impor-
tance by feature distortion in the main paper. The inverted
residual block forms the basic transformation. For the blocks
with stride = 1, the idendity mapping serves as the shortcut
which makes the transformations less important. The Mo-
bileNetV2 is detailed in Tab. 2 and MnasNet is detailed in
Tab. 9.

C. Other Properties of Vital Blocks
During the network optimization period, different paths

have some unique and interesting properties, e.g., BN bias
to the shallow path [1]. In this section, we study the conver-
gence speed of different layers in network optimization.

While training the residual network, all the paths are
jointly optimized. However, the depths are different for
these paths. Therefore, optimization difficulties are different.
Since the minimal path is the shortest path that directly

connects the input images to the ground truths. For any
other path that contains more random initialized layers, we
argue these paths are harder to be optimized compared to the
minimal path. Thus, the minimal path converges faster. We
propose a new metric to measure the convergence degree of
the parameters. Networks are randomly initialized and are
gradually trained until converge using the back-propagation
algorithm. Each layer (transformation) learns a series of
patterns and extracts the features. Denote the weights of
one transformation L as w, w0 is the randomly initialized
weights, and wt denotes the weights after training for t
epochs. T is the maximum epoch number for training the
parameter w until converge. We define a metric C to judge
the convergence degree of parameter w, and the metric is
used for measuring the saturation speed of the weights. The
metric C is defined as follows,

Ct = 1− D(wt,wT )

D(w0,wT )
, Ct =

{
0, if t = 0,

1, if t = T.
(1)

where D is the Frobenius norm measuring the distance be-
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Figure 2. The saturation curves for weights of all the convolution layers in the ResNet20 trained on the CIFAR-10 dataset. From left to right
are different layers in block1, block2, and block3, respectively. We train the network for 200 epochs. Weight decay is 1e-4. The learning rate
starts from 0.1 and decays by a factor of 10 in epoch 100, 150, and 180. The ’padding’ mode shortcut for downsampling blocks is used.

Table 2. Detailed architecture of MobileNetV2.
Layer Out Stride Type MnasNet-A1

Conv 32 2 Vital conv3 × 3

layer1_1 16 1 Vital k3e6

layer2_1 24 2 Vital k3e6
layer2_2 24 1 Non-Vital k3e6

layer3_1 32 2 Vital k3e6
layer3_2 32 1 Non-Vital k3e6
layer3_3 32 1 Non-Vital k3e6

layer4_1 64 2 Vital k3e6
layer4_2 64 1 Non-Vital k3e6
layer4_3 64 1 Non-Vital k3e6
layer4_4 64 1 Non-Vital k3e6

layer5_1 96 1 Vital k3e6
layer5_2 96 1 Non-Vital k3e6
layer5_3 96 1 Non-Vital k3e6

layer6_1 160 2 Vital k3e6
layer6_2 160 1 Non-Vital k3e6
layer6_3 160 1 Non-Vital k3e6

layer7_1 320 1 Vital k3e6

Params - - - 3.4
FLOPs - - - 300

Top-1 (%) - - - 72.0
Top-5 (%) - - - 91.0

tween two tensors. Different layers have different conver-
gence speed, so C is a function related to layers.

By following the proposed saturation measurement in
Eqn 1. The saturation curves are shown in Figure 2. All the
weights in block1 (non-vital) converge at a similar speed.
However, the vital layers show a faster saturation speed.
This experiment demonstrates that different layers converge
with different speeds, and the vital layers converge faster
because the non-vital layers would be affected by the noisy
initialization at the beginning.

D. The Diagram of Space Proposal

The figure 3 illustrates the strategy of space proposal
selection. After defining the computational targets T , we

Figure 3. The diagram of space proposal selection. In this diagram,
π represents the sampler for sampling the space proposals from
ΘT = {θT1 , · · · , θTm}. The θTi , i ∈ {1, . . . ,m} represents the
distributions for sampling the architectures AθTi .

optimize m different space proposals, and each space pro-
posal is utilized for sampling architectures that satisfy the
targets. The π is used for sampling space proposals. The
two-level sampling strategy is used to sample architecture
in every iteration. At each iteration, π is used to sample a
space proposal θTi and the θTi is used to sample an individual
architecture AθTi .

E. The Architectures on FBNet Search Space

HourNAS-A/B/G/I use the same search space and back-
bone as FBNet [7]. HourNAS searches for the kernel size,
expansion ratio, and operations. The search space is defined
as follows, and we also list the searched architectures in de-
tail. It is worth noticing that we do not use bells and whistles
like swish, SE modules in this experiment.

Table 3. The inverted residual block with the following settings.
Block Type Expansion Kernel Group

k3g2 1 3 2
k3e1 1 3 1
k3e3 3 3 1
k3e6 6 3 1
k5g2 1 5 2
k5e1 1 5 1
k5e3 3 5 1
k5e6 6 5 1
skip - - -



F. The Enlarged Search Space on FBNet Back-
bone

For our HourNAS-C/D/H experiment, the search space
and the SuperNet are defined as below. The backbone is the
same as FBNet [7] and the search space is slightly enlarged.
The architectures are detailed in Table 8.

Table 4. The inverted residual block with the following settings.
Block Type Expansion Kernel Group

k3e1 1 3 1
k3e3 3 3 1
k3e6 6 3 1
k5e1 1 5 1
k5e3 3 5 1
k5e6 6 5 1
k7e1 1 7 1
k7e3 3 7 1
k7e6 6 7 1
skip - - -

G. The Architectures on MnasNet Search
Space

For our HourNAS-E experiment, the search space and
the SuperNet are defined as below, which are the same as
MnasNet [5]. The architectures are detailed in Table 9.

Table 5. The inverted residual block with the following settings.
Block Type Expansion Kernel Group SE

k3e1 1 3 1 False
k3e3 3 3 1 False
k3e6 6 3 1 False
k5e1 1 5 1 False
k5e3 3 5 1 False
k5e6 6 5 1 False

k3e1se 1 3 1 True
k3e3se 3 3 1 True
k3e6se 6 3 1 True
k5e1se 1 5 1 True
k5e3se 3 5 1 True
k5e6se 6 5 1 True

skip - - - -

H. The Architectures on EfficientNet Search
Space

For our HourNAS-F experiment, we use the backbone
the same as EfficientNet [6]. The search space and the
architectures are detailed below.

Table 6. The inverted residual block with the following settings.
Block Type Expansion Kernel Group SE

k3e1se 1 3 1 True
k3e3se 3 3 1 True
k3e6se 6 3 1 True
k5e1se 1 5 1 True
k5e3se 3 5 1 True
k5e6se 6 5 1 True

skip - - - -



Table 7. Detailed architectures of HourNAS-A/B/G/I. The backbone is same as FBNet [7].
Layer Out Stride Type SuperNet HourNAS-A HourNAS-B HourNAS-G HourNAS-I FBNet-Max

(w/o crit priori)

Conv 16 2 Vital conv3 × 3 conv3 × 3 conv3 × 3 conv3 × 3 conv3 × 3 conv3 × 3

layer1_1 16 1 Non-Vital Super k3e1 k3e3 k3e3 k3e1 k5e6

layer2_1 24 2 Vital Super k5e6 k5e6 k5g2 k5e6 k5e6
layer2_2 24 1 Non-Vital Super k5g2 k3e3 k3g2 k5e1 k5e6
layer2_3 24 1 Non-Vital Super skip k5g2 k3e3 k3e1 k5e6
layer2_4 24 1 Non-Vital Super k3g2 skip k3e3 k3e1 k5e6

layer3_1 32 2 Vital Super k5e6 k5e6 k5e1 k5e6 k5e6
layer3_2 32 1 Non-Vital Super k3g2 k3e3 k3e1 k5e3 k5e6
layer3_3 32 1 Non-Vital Super k5g2 k3e3 k3e3 k5e3 k5e6
layer3_4 32 1 Non-Vital Super k5e1 k3e3 k3e3 k3e3 k5e6

layer4_1 64 2 Vital Super k5e6 k5e6 k5e3 k5e6 k5e6
layer4_2 64 1 Non-Vital Super k5e3 k5e6 k3e6 k5e3 k5e6
layer4_3 64 1 Non-Vital Super k3e1 k5e6 k3e3 k5e3 k5e6
layer4_4 64 1 Non-Vital Super k5e3 k3e6 k5e6 k5e6 k5e6

layer5_1 112 1 Vital Super k5e6 k5e6 k3e3 k5e6 k5e6
layer5_2 112 1 Non-Vital Super k3e3 k3e6 k3e3 k5e3 k5e6
layer5_3 112 1 Non-Vital Super k3e3 k3e6 k5e3 k3e1 k5e6
layer5_4 112 1 Non-Vital Super k3e3 k5e3 k5e3 k5e3 k5e6

layer6_1 184 2 Vital Super k5e6 k5e6 k3e6 k5e6 k5e6
layer6_2 184 1 Non-Vital Super k5e3 k3e6 k5e6 k3e3 k5e6
layer6_3 184 1 Non-Vital Super k5e3 k3e6 k3e6 k5e3 k5e6
layer6_4 184 1 Non-Vital Super k3e6 k5e6 k5e3 k5e6 k5e6

layer7_1 352 1 Vital Super k5e6 k5e6 k3e3 k5e6 k5e6

Params - - - - 4.8 5.5 4.7 4.8 5.7
FLOPs - - - - 298 406 297 318 583

Top-1 (%) - - - - 74.1 75.0 73.2 74.2 75.7
Top-5 (%) - - - - 91.8 92.2 91.4 91.8 92.8

Table 8. Detailed architectures of HourNAS-C/D/H. The backbone is same as FBNet [7].
Layer Out Stride Type SuperNet HourNAS-C HourNAS-D HourNAS-H

(w/o crit priori)

Conv 16 2 conv3 × 3 conv3 × 3 conv3 × 3 conv3 × 3 conv3 × 3

layer1_1 16 1 Vital Super skip k3e3 k3e3

layer2_1 24 2 Vital Super k3e6 k3e6 k3e1
layer2_2 24 1 Non-Vital Super k3e3 k5e1 k3e3
layer2_3 24 1 Non-Vital Super skip k5e1 k3e3
layer2_4 24 1 Non-Vital Super k3e3 k5e3 k5e1

layer3_1 32 2 Vital Super k5e6 k5e6 k5e3
layer3_2 32 1 Non-Vital Super k3e3 k5e3 k3e3
layer3_3 32 1 Non-Vital Super k3e3 k3e6 k3e3
layer3_4 32 1 Non-Vital Super k3e3 k5e1 k7e1

layer4_1 64 2 Vital Super k5e6 k5e6 k7e3
layer4_2 64 1 Non-Vital Super k3e3 k3e6 k7e3
layer4_3 64 1 Non-Vital Super k5e3 k3e6 k7e3
layer4_4 64 1 Non-Vital Super k7e1 k3e6 k7e3

layer5_1 112 1 Vital Super k7e6 k7e6 k7e3
layer5_2 112 1 Non-Vital Super k5e3 k7e3 k5e3
layer5_3 112 1 Non-Vital Super k5e1 k5e3 k5e3
layer5_4 112 1 Non-Vital Super k5e1 k5e3 k7e3

layer6_1 184 2 Vital Super k7e6 k7e6 k7e3
layer6_2 184 1 Non-Vital Super k5e3 k7e6 k3e6
layer6_3 184 1 Non-Vital Super k3e3 k5e6 k7e3
layer6_4 184 1 Non-Vital Super k3e6 k7e6 k7e3

layer7_1 352 1 Vital Super k7e6 k7e6 k7e6

Params - - - - 4.8 5.5 4.8
FLOPs - - - - 296 394 299

Top-1 (%) - - - - 74.1 75.3 73.5
Top-5 (%) - - - - 91.6 92.3 91.3



Table 9. Detailed architectures of MnasNet search space. The backbone is same as MnasNet [5].
Layer Out Stride Type SuperNet HourNAS-E MnasNet-A1

Conv 32 2 Vital conv3 × 3 conv3 × 3 conv3 × 3

layer1_1 16 1 Vital SepConv3 × 3 SepConv3 × 3 SepConv3×3

layer2_1 24 2 Vital Super k5e6 k3e6
layer2_2 24 1 Non-Vital Super k3e3se k3e6
layer2_3 24 1 Non-Vital Super k3e1se skip
layer2_4 24 1 Non-Vital Super k3e3 skip

layer3_1 40 2 Vital Super k5e6se k5e3se
layer3_2 40 1 Non-Vital Super k5e1 k5e3se
layer3_3 40 1 Non-Vital Super k3e1se k5e3se
layer3_4 40 1 Non-Vital Super k5e1 skip

layer4_1 80 2 Vital Super k5e6se k3e6
layer4_2 80 1 Non-Vital Super k3e3se k3e6
layer4_3 80 1 Non-Vital Super k3e3 k3e6
layer4_4 80 1 Non-Vital Super k3e3se k3e6

layer5_1 112 1 Vital Super k5e6se k3e6se
layer5_2 112 1 Non-Vital Super k3e3se k3e6se
layer5_3 112 1 Non-Vital Super k3e3 skip
layer5_4 112 1 Non-Vital Super k3e3 skip

layer6_1 160 2 Vital Super k5e6se k5e6se
layer6_2 160 1 Non-Vital Super k3e6 k5e6se
layer6_3 160 1 Non-Vital Super k5e3se k5e6se
layer6_4 160 1 Non-Vital Super k5e3se skip

layer7_1 320 1 Vital Super k5e6se k3e6

Params - - - - 3.8 3.9
FLOPs - - - - 313 312

Top-1 (%) - - - - 75.7 75.7
Top-5 (%) - - - - 92.8 92.8

Table 10. Detailed architectures of EfficientNet search space. The backbone is same as EfficientNet [6].
Layer Out Stride Type SuperNet HourNAS-F EfficientNet-Max

Conv 32 2 Vital conv3 × 3 conv3 × 3 conv3 × 3

layer1_1 16 1 Vital k3e1se k3e1se k5e6se

layer2_1 24 2 Vital Super k5e6se k5e6se
layer2_2 24 1 Non-Vital Super k5e1se k5e6se
layer2_3 24 1 Non-Vital Super k5e1se k5e6se
layer2_4 24 1 Non-Vital Super k3e1se k5e6se

layer3_1 40 2 Vital Super k5e6se k5e6se
layer3_2 40 1 Non-Vital Super k5e1se k5e6se
layer3_3 40 1 Non-Vital Super k3e1se k5e6se
layer3_4 40 1 Non-Vital Super k5e1se k5e6se

layer4_1 80 2 Vital Super k5e6se k5e6se
layer4_2 80 1 Non-Vital Super k3e6se k5e6se
layer4_3 80 1 Non-Vital Super k3e6se k5e6se
layer4_4 80 1 Non-Vital Super k3e6se k5e6se

layer5_1 112 1 Vital Super k5e6se k5e6se
layer5_2 112 1 Non-Vital Super k5e3se k5e6se
layer5_3 112 1 Non-Vital Super k5e3se k5e6se
layer5_4 112 1 Non-Vital Super k5e3se k5e6se

layer6_1 192 2 Vital Super k5e6se k5e6se
layer6_2 192 1 Non-Vital Super k5e6se k5e6se
layer6_3 192 1 Non-Vital Super k3e6se k5e6se
layer6_4 192 1 Non-Vital Super k5e6se k5e6se

layer7_1 320 1 Vital Super k5e6se k5e6se

Params - - - - 5.3 5.8
FLOPs - - - - 383 738

Top-1 (%) - - - - 77.0 78.3
Top-5 (%) - - - - 93.5 94.0
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