Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification

Fengxiang Yang^{1*}, Zhun Zhong^{2*}, Zhiming Luo^{3†}, Yuanzheng Cai⁴, Yaojin Lin⁵, Shaozi Li^{1†}, Nicu Sebe²

1 Artificial Intelligence Department, Xiamen University

2 Department of Information Engineering and Computer Science, University of Trento

3 Postdoc Center of Information and Communication Engineering, Xiamen University

4 Minjiang University 5 Minnan Normal University

Project: https://github.com/FlyingRoastDuck/MetaCam_DSCE

Appendix A. Detailed Explanation of DSCE

We use \mathbf{C}_j to denote the *j*-th centroid $(1 \leq j \leq N_c)$. $p_j = \frac{\exp(\mathbf{C}_j^{\mathrm{T}}\mathbf{f}/\tau)}{\sum_{m=1}^{N_c}\exp(\mathbf{C}_m^{\mathrm{T}}\mathbf{f}/\tau)}$ is the probability of assigning \mathbf{f} to the *j*-th class and $\sum_{j=1}^{N_c} p_j = 1$. $\hat{\mathbf{y}}$ is the one-hot vector of \mathbf{f} obtained by clustering. $\widetilde{y}_j = \frac{\exp(\hat{y}_j)}{\sum_{m=1}^{N_c}\exp(\hat{y}_m)}$ is the *j*-th element of softmax-normalized $\hat{\mathbf{y}}$. Then, we have:

$$\tilde{y}_{j} = \begin{cases} \frac{1}{N_{c}-1+e}, & \hat{y}_{j} = 0\\ \frac{e}{N_{c}-1+e}, & \hat{y}_{j} = 1 \end{cases}$$
(1)

The DSCE loss in our paper can be reformulated as:

$$L_{dsce} = -\sum_{j=1}^{N_c} p_j \log \tilde{y}_j.$$
⁽²⁾

[1] proves that a loss function L is robust to noisy labels if it satisfies the following constraint:

$$\sum_{k=1}^{N_c} L(\mathbf{f}, k) = Z,$$
(3)

where $L(\mathbf{f}, k)$ indicates the loss when the class label is k. Next, we will prove that DSCE loss satisfies Eq. 3.

Theorem 1 In a multi-class classification problem, the proposed DSCE loss (Eq. 2) satisfies the constraint in Eq. 3.

Proof 1 When the class label is k-th class, *i.e.*, $\hat{y}_k = 1$, Eq. 2 can be reformulated as:

$$L_{dsce}(\mathbf{f},k) = -p_k \log(\widetilde{y}_k) - \sum_{j \neq k}^{N_c} p_j \log(\widetilde{y}_j).$$
(4)

For convenience, we define $Q = \frac{1}{N_c - 1 + e}$. According to Eq. 1, Eq. 4 can be simplified as:

$$L_{dsce}(\mathbf{f}, k) = -p_k \log(eQ) - (\log Q) \sum_{j \neq k}^{N_c} p_j$$

= -(1 + log Q)p_k - (1 - p_k) log Q
= -p_k - log Q.

Then, we have:

$$\sum_{k=1}^{N_c} L_{dsce}(\mathbf{f}, k) = -\sum_{k=1}^{N_c} p_k - \sum_{k=1}^{N_c} \log Q$$
$$= -1 - N_c \log Q.$$

Therefore, the proposed DSCE loss satisfies Eq. 3 and is robust to noisy labels.

References

 Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under label noise for deep neural networks. In AAAI, 2017. 1

^{*}Equal contribution: yangfx@stu.xmu.edu.cn

[†]Corresponding author: {zhiming.luo, szlig}@xmu.edu.cn