Supplementary Materials for LASR: Learning Articulated Shape Reconstruction from a Monocular Video

Table 1. Choices of hyper-parameters for training.

Name	Value	
Optimization parameters		
Network architecture of ϕ_w	ResNet-18 (ImageNet-pretrained) [1]	
Optimizer	Adam [2]	
Learning rate for ϕ_w	1×10^{-4}	
Learning rate for other params.	5×10^{-3}	
Batch size	8 image pairs	
Loss weight $\{\beta_1, \ldots, \beta_4\}$	$\{0.5, 0.5, 2, 5 \times 10^{-3}\}$	
Measurement pre-processing		
Crop center	Center of object bounding box	
Crop size	$1.2 \times \text{longest edge}$	
Resized to	256×256	

1. Implementation details

Training details: We include details of the hyperparameters used for training in Tab. 1.

Video pre-processing: We provide details for video preprocessing. To ensure enough object motion between adjacent frames, we use a heuristic rule that skips the next frame when the average magnitude of measured flow within the object silhouette is lower than 0.05 in the clip space.

2. Notations

A summary of the notations is listed in Tab. 2.

References

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, pages 770–778, 2016.
- [2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

	Table 2. Table of notations used in this work.
Symbol	Description
	Numbers
Т	Number of frames in the input video
M	Number of faces in the mesh
N	Number of vertices in the mesh
В	Number of bones for LBS
	Measurements
I_t	Input RGB image at time t
S_t	Input or measured object silhouette image at time t
\mathbf{u}_t^+	Input or measured forward optical flow map from time t to $t + 1$
\mathbf{u}_t^-	Input or measured backward optical flow map from time t to $t-1$
\mathbf{Y}^*	Union of all measurements $\{I_t, S_t, \mathbf{u}_t^+, \mathbf{u}_t^-\}$
	Renderings
\hat{I}_t	Rendered color image of the object at time t
\hat{S}_t	Rendered object silhouette image at time t
$\hat{\mathbf{u}}_{t}^{+}$	Rendered forward optical flow map of the object from time t to $t + 1$
$\hat{\mathbf{u}}_{t}^{L}$	Rendered backward optical flow map of the object from time t to $t-1$
Ŷ	Union of all renderings $\{\hat{I}_t, \hat{S}_t, \hat{\mathbf{u}}_t^+, \hat{\mathbf{u}}_t^-\}$
	Variables
f_t	Focal length of the camera at time t
K _t	Intrinsic matrix of a simple pinhole camera (with zero skew and square pixel) at time
$R_{0,t}$	Object-to-camera rotation matrix $\in SO(3)$ at time t
T _{0.t}	Object-to-camera translation vector at time t
$G_{0,t}$	Object-to-camera transformation at time t , $\mathbf{G}_{0,t} = (\mathbf{R}_0 \mid \mathbf{T}_0)_t$
$R_{1B,t}$	Bone rotations from the rest pose to time t
$T_{1B,t}$	Bone rotations from the rest pose to time t
$G_{1\dots B,t}$	Bone transformations from the rest pose to time t , $\mathbf{G}_{i,t} = (\mathbf{R}_i \mid \mathbf{T}_i)_t$, $i \in \{1, \dots, B\}$
$\mathbf{D_t}$	Union of camera and bone transformations $\{G_{0,t}, \ldots, G_{B,t}\}$
$\mathbf{P_t}$	Projection matrix of the camera at time t , $\mathbf{P_t} = \mathbf{K_t} \mathbf{G_{0,t}}$
$\Delta \mathbf{V_t}$	Vertex motion from the rest shape to time t
	Parameters
(\underline{p}_x, p_y)	Principal point of the camera
${f V}_i$	Position of the i-th vertex of the mesh in the rest pose (or mean shape)
\mathbf{C}_i	Color of the i-th vertex of the mesh
S	Union of all mesh parameters, $S = \{V, C, F\}$
\mathbf{J}_b	Position of the center of the b-th bone (or Gaussian component)
\mathbf{Q}_b	Precision matrix of b-th bone (or Gaussian component)
W	Skinning weights matrix, $W = \{J, Q\}$
ϕ_w	Weights of the convolutional camera and pose network
n v	Normal vector of the symmetry plane in the canonical frame
X	Union of all Parameters
Б	Constants
F	Faces of the mesh
р н	Weignis between the losses
н n	Householder transformation matrix describing reflection about the y-z plane
11 0	
<u>CO</u>	Others
50	Training stage 0: optimize for $\{\phi_w(f_t, \mathbf{G_{0,t}}), p_x, p_y, \mathbf{n}^*, \mathbf{V}, \mathbf{C}\}$
C1 2	