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1. Implementation Details
Our implementations are based on the Transformer [9]

and Pytorch [7]. All the models are trained with one
GeForce 1080 Ti GPU, with a batch size of 64. Learning
rates will be detailed in the later paragraph.

Relation/Object Predictor. Our Relation/Object Pre-
dictor P is a 4-layer Transformer Encoder, with 4 attention
heads, hidden size of 256, and we use a dropout probability
of 0.1 on all layers. The Encoder is followed by three linear
layers to predict the masked word, PoP ID, and object ID,
respectively. We pretrain our Relation/Object Predictor P
for 50 epochs, using Adam optimizer with learning rate of
4e-4, β1 = 0.9, β2 = 0.999, L2 weight decay of 0.01, learn-
ing rate warmup over the first 10 epochs, and linear decay
of the learning rate.

Layout Generator. Our Layout Generator G comprises
two modules: a Layout Feature Extractor F and a predic-
tion head Hp. The Layout Feature Extractor F is a single-
layer Transformer Decoder with 4 attention heads, hidden
size of 256, and dropout ratio of 0.1. The Layout Feature
Extractor F first extracts the feature of the synthesized lay-
out B1:t−1, denoted as ebt , and concatenates ebt with contex-
tualized feature vectors ft and f̄ to form the context vector
ct = [ft⊕f̄⊕ebt ] for the prediction headHp. We implement
our prediction head Hp by decomposing the quadravariate
distribution into two bivariate distributions, i.e.:

pθt(bt | ct) = pθt(xt, yt, wt, ht | ct)
= pθt(xt, yt | ct)pθt(wt, ht | ct, xt, yt).

(1)

In practice, we use two linear layer to model the parameters
of the bivariate normal distribution of (xt, yt) and (wt, ht),
respectively.

Visual-Textual Co-Attention. Our Visual-Textual Co-
Attention (VT-CAtt) is a 4-layer Transformer, with 4 atten-
tion heads, hidden size of 256, and we use a dropout prob-
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Dataset Training Set Testing Set #Obj #Pred#Img #Rel #Img #Rel
COCO-Stuff ∼106K ∼800K 5,000 ∼36K 155 6
VG-MSDN 46,164 ∼507K 10,000 ∼111K 150 50

Table A. Descriptions of the COCO-stuff and VG-MSDN datasets.
Note that, #Img and #Rel represent the total number of images
and that of relation pairs in the dataset, respectively. In the last
two columns, Obj and Pred denote the numbers of unique object
classes and predicates, respectively.

ability of 0.1, followed by a bounding box prediction head
WP which is a single linear layer predicting the offset of
the coarse bounding boxes .

After pretraining the Relation Predictor P , we train our
LT-Net in an End-to-End fashion with different learning
rates for each module. The Relation/Object Predictor P is
fine-tuned with learning rate of 1e-5 and linear decay of the
learning rate. We jointly optimize our Layout Generator
G and Visual-Textual Co-Attention (VT-CAtt) using Adam
optimizer with learning rate of 1e-4, β1 = 0.9, β2 = 0.999,
L2 weight decay of 0.01, learning rate warmup over the first
5 epochs, and linear decay of the learning rate.

Layout to Image Generation Since our work focuses on
scene-graph-to-layout generation, we simply leverage the
existing model of LostGAN [8] for layout-to-image synthe-
sis.

2. Experiments

2.1. Datasets

We perform our experiments on the COCO-Stuff
dataset [1] and VG-MSDN dataset provided by [6]. Since
the raw VG [4] dataset may contain a large number of noisy
data, we use a cleansed-version VG-MSDN dataset. The
statistics of these datasets are provided in Table A.
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Figure A. Distribution visualization of relation priors generated
by our LT-Net. Note that x and y axes represent the differences
between the associated bounding boxes of subject and object pair
in horizontal and vertical directions, respectively. Different colors
denote each relation of interest. For example, the circles in green
describe subject-object pairs with the relation word “right of”.

2.2. Training details of the baselines

For Sg2Im and CanonicalSg2Im, the authors have made
their implementation publicly available1 2. To be more spe-
cific, we directly use the released model of Sg2Im; as for
CanonicalSg2Im, we apply their model of scene-graph-to-
layout synthesis, and disregard the one for layout-to-image
generation. Since the authors of NDN [5] did not release
their code, we follow Sects. 3 and 4.1 of their paper to im-
plement their model.

2.3. Details of evaluation protocols

mIOU. As noted in Sec. 3.3, our LT-Net utilizes GMM
to model the distributions of the bounding box coordinates
for each entity (i.e., subject or object in the scene graph).
With the learned GMM parameters, we predict the coor-
dinates of each bounding box based on the associated dis-
tribution given the input scene graph. Based on VAE, NDN
samples a vector from the latent space for each entity, which
is fed into MLP to generate the coordinates of each bound-
ing box. As for Sg2Im and CanonicalSg2Im, they do not
predict bounding box distributions as the outputs. Instead,
they feed the extracted scene graph features into MLP lay-
ers to produce layouts. When calculating mIOU, relation
accuracy and FID, sampling diverse layout outputs is not
required. We simply apply the mean of each distribution
for predicting the bounding box coordinate outputs. As for
NDN, it inputs the derived mean vector into the MLP for

1https://github.com/google/sg2im
2https://github.com/roeiherz/CanonicalSg2Im

producing layouts. The above process follows the protocols
of generative models for quantitative evaluation.

Diversity Score. Given the input scene graph, five lay-
outs are sampled from the bounding box distributions de-
rived by each model (including ours). The same LostGAN
is applied to convert the layouts into images for calculating
the diversity scores (ten image pairs produced by the five
sampled layouts).

2.4. Distribution of relation priors on COCO-stuff

To demonstrate the ability to infer the spatial information
implied by the relation constraints, we visualize the spa-
tial prior of some predefined words: surrounding, inside,
left of, right of, above and below. To achieve this, we ran-
domly select 100 samples of corresponding relation words
and plot the mean of the distribution induced by these re-
lation words. To be more specific, we plot the means (µx
and µy) of the distribution induced by these relation words,
which represent the box disparity between the associated
subject and object pairs. The result can be found in Fig-
ure A, which confirms that our model learns the mapping
between semantic words and spatial relations. Take the dis-
tribution in green in Figure A) (i.e., the relation word “right
of”) for example, it can be seen that the green circles are
on the right hand side of the y axis, indicating that the x
coordinate values of the subject boxes were observed to be
generally larger than those of the object boxes, matching the
relation of “right of”. Note that both µx and µy are normal-
ized by the width and height of each image.

2.5. Qualitative Results

In this section, we present additional qualitative results
following the same setting as that in Experiments 4.2. The
presentation order follows that in Sect. 4.2. We compare
our proposed LT-Net with recent state-of-the-art models, in-
cluding Sg2Im [3], NDN [5] and CanonicalSg2Im [2].

Plausible layout generation. We conduct the experi-
ment on both COCO and VG-MSDN datasets, and the re-
sults are shown in Figures B (COCO) and C (VG-MSDN),
respectively. We demonstrate that our model is capable of
handling complex objects and relations by incrementally
adding more objects in images. From top to bottom we
gradually increase the complexity of the input scene graph.
Fig. B presents the synthesized results on the COCO dataset
with 4 to 8 objects in an image. For the VG-MSDN dataset,
Fig. C shows our generated images from 5 up to 10 objects
in an image.

Spatially-diverse layout generation. In Fig. D, we
show example layout generation results given the same
scene graph input. It is worth noting that the original im-
plementation of Sg2Im [3] did not present diverse layouts,
and the diversity of the image is produced by the layout-to-
image model [8]. We also note that, though NDN [5] and
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Model COCO VG-MSDN
mIOU ↑ R@0.5 ↑ mIOU ↑ R@0.5 ↑

Sg2Im 0.29 35.69 0.168 10.92
NDN 0.33 28.03 - -
WSGC 0.42 38.2 0.174 10.94
Ours 0.49 38.76 0.183 12.03

Table B. Quantitative evaluation. The bold numbers represent
the best scores. Recall that NDN is not applicable on VG-MSDN
since it requires complete graph annotation as inputs. Note that
WSGC stands for CanonicalSg2Im.

CanonicalSg2Im [2] generate diverse layout outputs, their
result did not semantically match the input scene graph. As
for our LT-Net, spatial diversity can be produced, while the
semantic plausibility is properly preserved.

Conceptually-diverse scene graph generation. To in-
fer novel objects from an input scene graph, we construct a
new triplet of subject-relation-object. Either subject or ob-
ject shares the same Obj ID as those already presented in
the input scene graph, while the MASK token is assigned to
the remaining two entities (e.g., Fig. 5b in the main paper).
To predict the masked entities, we assign the sentence ID to
this newly added triplet (following the consecutive numbers
from the last known triplet), feed the inputs defined in Line
324 into Predictor P , and infer the associated embedding
outputs.

Finally, we demonstrate the capability of our LT-Net to
manipulate implicit objects and relationships in the scene in
Figures E and F, verifying the ability of our model in pro-
ducing conceptually-diverse yet plausible layouts given an
input scene graph. Take the first row in Fig. E for example,
it can be seen that our model predicts sky as an additional
object in the input scene graph. Such a prediction is rea-
sonable since sky is a common object in the outdoor scene.
More results can be found in Fig. E and Fig. F.

2.6. Quantitative comparisons

In this section, we present additional quantitative results
following the same setting as that in Experiments 4.2. The
presentation order follows that in Sect. 4.2. We compare
our proposed LT-Net with recent state-of-the-art models, in-
cluding Sg2Im [3], NDN [5] and CanonicalSg2Im [2].

Layout generation. In Table B, we report mIOU and
recall score at 0.5 (IOU threshold) and compares our LT-
Net with Sg2Im [3], NDN [5] and CanonicalSg2Im [2]. We
observe that our LT-Net achieved the best mIOU and recall
score among all methods both on COCO and VG-MSDN
dataset. This verifies the design of our LT-Net in encoding
contextual features while enforcing layout recovery with re-
lation consistency.

Image generation. In Table C, we provide additional
quantitative evaluation on the generated image by taking
Layout2Im [10] as another layout-to-image model for com-

Model #Para COCO VG-MSDN
FID ↓ DS ↑ FPS FID ↓ DS ↑ FPS

Sg2Im 0.97M 78.46 18.77 180 128.03 14.61 156
NDN 44M 106.24 34.01 50 - - -
WSGC 5.5M 113.70 25.59 59 135.63 20.15 19
Ours 6.2M 86.53 27.68 46 133.89 33.69 27

Table C. Quantitative evaluation using Layout2Im. The bold
numbers represent the best scores, and the underline ones are the
second highest. Recall that Sg2Im requires ground truth image
for training, and NDN is not applicable on VG-MSDN since it
requires complete graph annotation as inputs. Note that WSGC
stands for CanonicalSg2Im.

parisons. From this table, we observe that our method
achieved comparable or improved image quality, which is
consistent with the results presented in Table 2 of the main
paper.

The number of parameters and inference time. For
the practical concern, we also provide the comparison on
the number of parameters and the inference time. As for
the number of parameters, we use the ”count params” tool
3 in PyTorch to calculate the amount of parameter in the
model. For the inference time, we report frame per second
(FPS) rate in the inference time. Table C lists the results,
confirming satisfactory efficiency of our model.
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Figure B. Qualitative comparisons of layout generation on COCO-Stuff. For each row, we show the scene graph input, ground truth
layout, and those produced by different approaches. Note that the synthesized images are converted from the corresponding layouts by [8].
Also, those bounding boxes in green denote the layout components matching the given description, while those in red do not.
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Figure C. Qualitative comparison on VG-MSDN. For each row we show the scene graph input, ground truth layout, synthesized layout,
and image converted from the layout by LostGAN [8]. Also, those bounding boxes in green denote the layout components matching the
given description, while those in red do not.
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scene graph GT LT-Net CanonicalSg2Im [2] NDN [5] Sg2Im [3]

Figure D. More example results of spatially-diverse layout generation on COCO-Stuff. For each row, we show the scene graph
input, ground truth layout, and two spatially-diverse layouts synthesized by different methods. Note that the produced layouts are further
converted into images by [8] for visualization purposes. Note that Sg2Im does not exhibit sufficient spatial diversity, while CanonicalSg2Im
and NDN might not produce results semantically matching the input. Also, those bounding boxes in green denote the layout components
matching the given description, while those in red do not.
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Figure E. More example results of conceptually-diverse layout generation. Given an input scene graph, our LT-Net generates concep-
tually diverse scene graphs inferring plausible objects and relationships, allowing generation of conceptually diverse layouts.
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Figure F. More example results of conceptually-diverse layout generation. Given an input scene graph, our LT-Net generates conceptu-
ally diverse scene graphs inferring plausible objects and relationships, allowing generation of conceptually diverse layouts.
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