
Learning to Segment Rigid Motions from Two Frames:
SUPPLEMENTARY MATERIALS

1. Rigidity cost maps
In Sec. 3.2, we briefly motivated the design choice of

using rigidity cost-maps inputs, and we expand the partic-
ular cost functions here. Given motion correspondences
(p0,p1) ∈ R2, camera intrinsics (K0,K1), and camera
motion Rc ∈ SO(3), Tc ∈ R3, we construct four geomet-
ric motion cost maps that are tailored to particular motion
configurations, including 1) an epipolar cost, 2) a homogra-
phy cost, 3) a 3D P+P cost, and 4) a depth contrast cost.
1) Epipolar costs are applied to detect general moving ob-
jects, computed as the classic Sampson error [7] per-pixel.
We include it here for completeness:
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and (p̃0, p̃1) are motion correspondences in the homoge-
neous coordinates. ε = 10−9 is a constant value added for
numerical stability.
2) Homography costs are applied to deal with motion de-
generacies in epipolar geometry [16], when it becomes diffi-
cult to estimate camera translation, but not rotation [2]. A
visual comparison between epipolar costs and homography
costs can be found in Fig. 3. The homography cost is imple-
mented as per-pixel symmetric transfer error [4] with regard
to the rotational homography, HR = K0RcK1

−1,

chom = d(p̃0,HRp̃1)
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2, (2)

where d(·, ·) is the Euclidian image distance between two
points.
3) 3D P+P costs are applied to detect the coplanar motion,
where points are moving along the epipolar line (not de-
tectable by the epipolar costs, as analyzed in Sec. 3.1. Our
3D P+P cost is extended from the 2D residual error of [1],

c3D = ||T̃sf || · | sinβ|, (3)

where β = |∠(T̃sf ,−Tc)| is the measured angle between
the normalized scene flow T̃sf (as computed through optical
expansion using the method of [18]) and negative camera
translation−Tc, capped to π

2 . A visual comparison is shown
in Fig. 4.
4) Depth contrast costs are applied to address the colin-
ear motion ambiguity, where points are moving opposite

Table 1: Details for training and inference. C: FlythingChairs [3].
T: FlythingThings [11]. SF: SceneFlow [11]. V: VIPER [13]. The
optical flow network is trained sequentially on C, T, and C+SF+V.

Parameter Value

Optical flow
Network architecture VCN [17]
Optimizer Adam [9]
Learning rate 1× 10−3+One-cycle
Batch size / iterations on C 16 image pairs / 70k
Batch size / iterations on T 16 image pairs / 70k
Batch size / iterations on C+SF+V 12 image pairs / 70k

Optical expansion
Network backbone U-Net [14, 18]
Optimizer Adam [9]
Learning rate 1× 10−3+One-cycle
Batch size / iterations on SF 12 image pairs / 70k

Rigid motion segmentation
Network backbone U-Net / DLA-34 [14, 19, 20]
Optimizer Adam [9]
Learning rate 5× 10−4+One-cycle
Batch size / iterations on SF 12 image pairs / 70k

Rigid body scene flow
# data poitns / iterations for RANSAC 3k / 1k
# iterations of LM optimization 20
Average time on KITTI / pair 1.3s

to the camera translation direction in 3D, and therefore not
detectable by the above costs, as shown in Fig. 5. The depth
contrast cost is implemented as:

cdepth = | log( Z
flow

γZprior )|, (4)

where the flow-triangulated depth Zflow0 can be computed ef-
ficiently using midpoint or DLT triangulation algorithm [7],
the monocular depth prior Zprior0 can be represented by a
data-driven monocular depth network [6], and the scale fac-
tor γ that globally aligns Zprior0 to Zflow0 can be determined
by the ratio of their medians. A visual comparison between
the flow-triangulated depth and monocular depth prior is
shown in Fig. 6.

2. Training details

The details for training optical flow, optical expansion
and rigid motion segmentaion networks are shown in Tab. 1.
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Figure 1: Failure cases with colored centers and mask predictions. GT
annotations are shown at the bottom left. Red boxes in case (III) indicate
moving objects predicted by ours but not labelled by DAVIS.

3. Details of rigid body scene flow

In Sec. 3.2, we describe rigid body scene flow that (1) fits
3D rigid motions per rigid body, and (2) updates depth as
well as flow measurements. More details are provided here.

Overall, our goal is to select high-quality flow correspon-
dences for model fitting, and update the rigid bodies with
large enough motion. To do so, we first define “valid pixels”
as pixels with flow confidence (in range 0-1, estimated by
VCN [17]) greater than 0.5. During fitting, we use flow cor-
respondences of valid pixels from each rigid motion mask
to fit an essential matrix through a least median of squares
estimator [15]. Then, each essential matrix is decomposed to
four rotations and up-to-scale translations, where only one is
feasible through cheirality check [7]. To determine the scale
of translation, we triangulate flow correspondences at valid
pixels and align it with the initial depth input by a scale factor
through RANSAC [5]. To take advantage of accurate depth
estimation in the stereo case, we refine the estimated rigid
transformations by solving a Perspective-n-Point problem
given first frame depth and flow that minimizes re-projection
errors with Levenberg–Marquardt algorithm [7].

Finally, we update depth and flow estimations according
to the estimated 3D rigid motions. Rigid bodies whose aver-
age parallax flow magnitude (defined as “rectified” optical
flow after rotation removal in Sec.3.1) is lower than 4px, or
has fewer than 30% valid pixels are not updated.

4. Failure cases

Although our method outperforms prior art on the chal-
lenging KITTI and Sintel datasets, we observe three types
of failures when applied to DAVIS (Fig. 1): (I) Our method
successfully detects centers of moving bodies, but fails to
segment the exact boundary of non-rigidly deforming ob-
jects. (II) Our method fails to estimate camera motion when
the background is dominated by deforming particles, such as
water and smoke. (III) Our method estimates rigidity from
two-frames. Over such small time scales, parts of moving
objects might be regarded as rigid - e.g., the foot of a dancer
that remains still for two frames may be grouped with the
rigid background. Moreover, we segment all rigidly-moving
objects, while DAVIS focuses on “visually salient” objects,
treating others as false positives. Future work could improve
results by processing more than 2 frames or using appearance
cues.

(a) Two-frame overlay (b) Our rigid motion outputs

(e) Foreground segmentation of RTN (f) Segmentation of Mask R-CNN

(c) Monocular depth of MiDaS (d) Our two-frame depth

Figure 2: Results on Sintel sequence temple_2, frame 17-18. (a)-(b)
Our method segments rigid motions and fits 3D rigid transforma-
tions over two frames. The blue and red arrows indicate the esti-
mated motion of the rigid background and parts respectively. (c)-(d)
An initial depth is refined by triangulating optical flow within each
rigid motion mask. Note that the tower in the cyan rectangle is lean-
ing in the initial MiDaS [12] depth, but “rectified” by our method.
(e)-(f) Our method segments rigid objects more reliably than the
prior two-frame rigidity estimation method [10] and generalizes to
novel appearance compared to appearance-based detectors [8].

5. Qualitative comparison

We provide additional visual comparisons with prior ap-
proaches on KITTI and Sintel in Fig. 7 and Fig. 8. Compared
to appearance-based methods for segmenting rigid motions,
our method is able to correctly segment the static objects
as part of the rigid background, and generalizes to novel
appearance. Compared to geometric motion segmentation
methods, our method is more robust to degenerate motion
configurations and noisy flow as well as camera inputs. One
example of our method decomposing a flying dragon into
multiple rigid parts is shown in Fig. 2.

6. Ablation study of rigid body scene flow

We study the effect of rigid motion parameterization for
scene flow estimation and report results on 200 images of
KITTI-SF as shown in Tab. 2. Without rigid motion parame-
terization, our method is equivalent to optical expansion [18],
which upgrades 2D flow fields to 3D, but does not refine the
first frame disparity as well as optical flow. In contrast, the
proposed method reduces the overall scene flow error by
24.6% through rigid body refinement. Replacing the pro-
posed rigid motion masks with appearance-based masks pro-
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Table 2: Ablation study of stereo scene flow on KITTI-SF images. D1 and D2: first and second frame disparity error. Fl: optical flow error.
all: evaluated on all pixels. fg: evaluated on foreground pixels only. SF: scene flow error. ∆: percentage of error reduction after refinement.
∗First frame disparity does not change during refinement.

∗D1 (%) D2 (%) Fl (%) SF (%)

Method all ↓ fg ↓ all ↓ fg ↓ all ↓ ∆-all ↑ fg ↓ ∆-fg ↑ all ↓ ∆-all ↑ fg ↓ ∆-fg ↑

Baseline OE [18] 1.41 0.76 2.45 0.91 4.02 0 2.50 0 5.12 0 3.07 0
Ours Mask R-CNN 1.41 0.76 2.11 1.99 3.53 12.1 4.34 -73.6 4.02 21.5 4.86 -36.8

Ours Rigid Mask 1.41 0.76 2.04 1.05 3.32 17.4 2.16 15.7 3.86 24.6 2.78 10.4

duced by Mask R-CNN leads to a noticeable accuracy drop.
Our rigid body parameterization also leads to a constant im-
provement of scene flow accuracy for both foreground and
background regions.
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Sampson costs Eq. (1) R-Homography costs Eq. (2)two-frame overlay / ground-truth

Figure 3: Epipolar costs vs homography costs. Top: Gray-scale costs values. Bottom: Binary segmentations after thresholding the costs.
This scene features two moving foreground cars and a static camera that causes motion degeneracy in epipolar geometry (e.g., the low-cost
but moving region in the Sampson cost map, marked by the red circle). In such cases, epipolar line is not well-defined, and the homography
model is more suitable for motion segmentation.

Sampson costs Eq. (1) R-Homography costs Eq. (2)two-frame overlay / ground-truth 3D P+P costs Eq. (3)

Figure 4: 3D P+P costs. Top: Gray-scale costs. Bottom: Binary segmentations after thresholding the costs. This scene contains a moving
camera and nonrigid dynamic objects, where pixels that move along the epipolar line are not recoverable under classic motion segmentation
criteria (e.g., the low-cost but moving region in the Sampson cost map, marked by the red circle). In such cases, our 3D P+P cost is more
suitable.

Sampson costs Eq. (1) R-Homography costs Eq. (2) Depth contrast costs Eq. (4)two-frame overlay / ground-truth

Figure 5: Depth contrast costs. Top: Gray-scale costs. Bottom: Binary segmentations after thresholding the costs. This scene contains a
moving camera and a rigid body (car) moving along the negative direction of camera translation, which is not recoverable under classic
motion segmentation criteria (e.g., the low-cost but moving region in the Sampson cost map, marked by the red circle) as well as the 3D P+P
cost. In such cases, our depth contrast cost is more suitable.
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Two-frame overlay

Figure 6: Flow-triangulated depth vs monocular depth prior. The flow-triangulated depth Zflow
0 (middle) is the triangulation of motion

correspondences assuming overall rigidity. The monocular depth prior Zprior
0 (right) can be represented by a data-driven monocular

depth network [12]. In this example, the left vehicle is moving opposite to the camera translation direction, and cannot be detected by
epipolar constraints, as shown in Fig. 2 of the main text. However, it appears abnormal (floating above the ground) in the flow-triangulated
reconstruction. To detect such collinearly moving objects, we globally align Zprior

0 to Zflow
0 by a scale factor γ computed as the ratio of

their medians, which reveals the floating (moving) car that is inconsistent with the monocular depth prior.

Sampson error

Motion-angle

Ours (rigid background)

Two-frame overlay

      FusionSeg motion stream

CC (w/ depth)

Figure 7: Illustration of coplanar motion ambiguity on KITTI. Rigid background are indicated by the white color. Points moving along the
epipolar line, for example the roof of the cars, yields small Sampson error, and therefore are estimated as background in classic geometric
pipelines. We make use of optical expansion, which reveals the relative depth change, to resolve such ambiguity. Compared to prior
motion-based segmentation methods, ours is more robust to noise.

Ours (rigid background)FusionSegGround-truth

Mask R-CNN COSNet

Figure 8: Results on Sintel market sequence. Prior single frame or video motion segmentation methods fail due to unusual view-point
(viewing from the ground) and never-before-seen objects (dragon, wood carts). Our method accurately segments novel moving objects.
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