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A. Theoretical Analysis of Haar Pyramid Flow

In the main text, we propose a generative flow model

based on the framework of a Haar wavelet image pyramid.

Our model is trained to generate images in a coarse-to-fine

fashion with respect to the image pyramid, by uncoupling

the training of a multi-scale flow model down into training

of conditional flow blocks. Specifically, we optimize the pa-

rameters of the flow model f by maximizing the conditional

log-likelihood of the fine features x̃i given the coarser image

xi+1 for every level of the image pyramid (except the last

layer, which uses standard log-likelihood):

L(x) =

(

log pN
(

zk;µk,Σk

)

+ log | det
dzk

dxk

|

)

+

k−1
∑

i=0

(

log pN
(

zi;µi(xi+1),Σi(xi+1)
)

+ log | det
∂zi

∂x̃i

|

)

We then state that optimizing these conditional log-

likelihoods is equivalent to optimizing the log-likelihood

of the data. The proposition is restated and the proof is

provided below.

Proposition 1. Let f denote the multi-scale flow model

based on a Haar image pyramid. Given an image x ∈
R

C×W×W (C ≥ 1,W = 2K ,K ≥ k), the log-likelihood of

sampling x from f can be computed exactly as,

log p(x) = L(x) + CW 2 log 2

k−1
∑

i=0

21−2(i+1).

Proof. We first rewrite the left side using the change-of-

variables formula,

log p(x) = log p(z) + log | det
dz

dx
|, (1)

letting z denote z0 · · · zk. The first term of (1) can be de-

composed as follows,

log p(z) = log pN (zk;µk,Σk)

+

k−1
∑

i=0

log pN (zi;µi(xi+1),Σi(xi+1)), (2)

using the chain rule and noting that xi+1 is a deterministic

function of zi+1 · · · zk. For the second term of (1), noting

that x = x0 (the image at the top level of the pyramid), we

have:
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where the second equality follows because dz1···zk

dx1
is a trian-

gular block matrix. Recursively applying this decomposition

to the term log | det dzi···zk

dxi

|, we obtain:
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Note that the last term corresponds to the sum of log-

determinants of the Jacobian of the Haar wavelet transforms

at every level of the pyramid, which is computed exactly

as log | det d[xi+1,x̃i]
dxi

| = CW 2 log 2 · 21−2(i+1). The proof

follows from plugging (2) and (3) into (1).

B. CellProfiler Evaluation

CellProfiler [4] is a standard open-source software used

for segmenting cells/nuclei and quantifying specific morpho-

logical features. The segmentation of nuclei and cells occurs



CellProfiler Metrics Correspondence Accuracy SWD

Coverage Count Size Zernike Exp. Level Mito ER RNA Cyto DNA Overall

Ground Truth

(Upper Bound)
- - - - - 59.9 59.2 60.5 58.3 61.8 64.2 -

CGAN 6.4 1.9 -1.5 -1.0 9.2 53.0 52.4 55.3 50.8 56.2 56.1 56.1

CGlow 3.1 -3.7 -3.0 -3.1 3.7 51.1 50.9 51.9 52.2 54.3 54.5 5.40

CGlow+Contrast 9.2 1.7 12.9 6.1 8.6 55.8 53.2 55.4 56.4 58.0 59.1 4.20

Pyramid Flow 5.0 9.1 6.1 2.9 9.2 51.8 52.0 52.5 52.7 53.3 55.7 3.41

Pyramid Flow+Contrast

(Mol2Image)
15.8 19.7 11.0 4.9 13.4 55.3 54.6 55.4 55.8 57.6 62.6 4.27

Table 1: Evaluation of Mol2Image (our model) vs. the baselines on images generated from molecules that were held-out from

the training set. “CellProfiler Metrics” are Spearman correlation coefficients (×102) between biological features from real

and generated images; higher is better. “Correspondence accuracy” represents the accuracy of a pretrained correspondence

classifier model evaluated on generated images; higher is better and ground truth (upper bound) achieves between 60.0 and

65.0. “SWD” is the sliced Wasserstein distance metric (×10−2) from [2]; lower is better. All results within 1% of the best are

shown in bold font. See main text for details.

Image Size Glow [3] Haar Pyramid Flow

8 x 8 4.49 4.49

16 x 16 4.55 4.48

32 x 32 5.27 5.23

64 x 64 5.78 5.83

Table 2: Log-likelihood of validation images computed from

Glow vs. our pyramid flow model. The values are compara-

ble, which supports our theoretical analysis in Proposition

1 that our approach scales flow models to larger images

without changing the log-likelihood objective.

in two steps: (1) thresholding is performed to identify the

nuclei from the DNA stain, and (2) the nuclei are used as

reference points for determining boundaries between cells

and identifying cell objects. Once the cells are identified,

multiple pipelines are available to measure shape and in-

tensity features within each cell. To evaluate the generated

images from our model, we extract morphological features

for a subset of generated and held-out images and compute

the correlation coefficient between the features of generated

and real images. To increase the range of phenotypes within

the evaluated subset, we focus our evaluation on molecules

that are more likely to cause a morphological change in cells

and thus more likely to be of interest to practitioners, based

on the atypical morphology criterion described in Section C.

C. Analysis of Molecular Embeddings

As described in the main text, to evaluate the molecular

embedding space learned by our graph neural network, we

train a linear classifier to predict a subset of morphological

features. We curate the labels for this task as follows. The

dataset of Bray et al. [1] provides measured values of the fol-

lowing morphological features for every cell image in their

dataset: area, compactness, eccentricity, form factor, major

axis length, minor axis length, radius, perimeter, solidity, and

cell count. To each small molecule, we assign a continuous-

valued vector representing the mean values of these features

observed in cells treated with that molecule. Direct predic-

tion of these values is not a meaningful task because the

amount of intra-molecular variability is high relative to the

inter-molecular variability; much of the variability in the fea-

tures may be naturally occurring due to stochasticity in cell

growth and is not explained by the molecular perturbation.

Therefore, we predict instead the presence of atypical mor-

phology caused by a molecule. We convert these continuous

values to binary labels – 1 if the value is in the top or bottom

1% / 5% / 10% of the values for its class, and 0 otherwise –

and train a logistic regression model to perform multi-task

binary classification. The results in Table 4 of the main text

show that the molecular embeddings learned by our graph

neural network reflect morphological properties of treated

cells and enable linear separation of molecules that cause

atypical morphological features.

D. Relation to Biological Assays

To show that our generated images are biologically mean-

ingful, we similarly extract image features from both real and

generated images using a pretrained Wide-ResNet50, and

use logistic regression on the image features to predict stan-

dard biological assays extracted from the ChEMBL database.

The results in Figure 1 show that our generated images are

able to achieve strong predictive performance (median ROC-

AUC of 0.71) of drug assays that approaches ground truth

performance (median ROC-AUC of 0.80) and greatly outper-

forming the conditional Glow baseline (median ROC-AUC

of 0.49).

E. Additional Tables

Supplementary Table 1 shows the complete results of the

different approaches on generating images corresponding

to held-out molecules, and supplements the results of Ta-

ble 2 of the main text. Our conditional flow models that

use contrastive learning during training (as we propose in

Section 3.3 of the main text) outperform the other models



Figure 1: AUC-ROC values of logistic regression models trained to predict the outcomes of biological assays from image

features. Higher is better.

in generating images corresponding to held-out molecules.

Supplementary Table 2 shows empirical evidence that the

log-likelihoods computed by Glow and our pyramid flow

model are equivalent.

F. Additional Qualitative Examples

Supplementary Figure 2 shows additional examples of

full-resolution cell images generated by the unconditional

version of our Haar pyramid flow model. Supplemental Fig-

ures 3 and 4 shows examples of full-resolution cell images

generated by our improved conditional flow model corre-

sponding to different molecular treatments.
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Figure 2: Additional examples of 5-channel 512 × 512 cell images generated by our multi-scale Haar image pyramid flow

model. From left to right: mitochondria, endoplasmic reticulum, nucleoli/cytoplasmic RNA, actin (cytoskeleton), DNA

(nucleus).



Figure 3: Examples of 512 × 512 cell images generated by our method (Mol2Image) in comparison to ground truth images for

the same molecule. RGB channels represent three out of five channels from the full image.



Figure 4: Examples of 512 × 512 cell images generated by our method (Mol2Image) in comparison to ground truth images for

the same molecule. RGB channels represent three out of five channels from the full image.


