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1. Introduction

In this supplementary material, we elaborate on the de-
tails of the datasets used and conduct additional experi-
ments to verify the effectiveness of MvCLN.

2. Additional Experiments

In this section, we carry out additional experiments in-
cluding classification and ablation studies to further show
the effectiveness of the proposed MvCLN.

2.1. Details of the Datasets

• Scene-15 [5]: The dataset consists of 4,485 images
distributed over 15 indoor and outdoor scene cate-
gories. Similar to [4], two image features are extracted
as views, i.e., 20-dim GIST feature and 59-dim PHOG
feature;

• Caltech-101 [8]: The dataset consists of 9,144 images
associated with 101 object categories, as well as an ad-
ditional background category. Following [16], two fea-
tures are used as views, i.e., 1,984-dim HOG feature
and 512-dim GIST feature;

• Reuters [1]: A subset, which consists of 18,758 sam-
ples of six classes, is used. Similar to [7], we use the
first two languages (English and French) as two views
and apply a standard autoencoder to project the data
into a 10-dim space for faster speed;

• NoisyMNIST [13]: The dataset consists of 70,000
samples from 10 classes. As the baselines cannot han-
dle a large-scale dataset, we randomly select 30,000
samples for evaluation.
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2.2. Classification Performance

To further verify the effectiveness of MvCLN, we per-
form classification on the learned representations with a
comparison of nine multi-view learning methods. The used
baselines include CCA [11], KCCA [3], DCCA [2], DC-
CAE [13], LMSC [14], MvC-DMF [17], BMVC [16], AE2-
Nets [15], and PVC [6]. Note that, SwMC [9] cannot be
used in this task since it directly obtains the clustering as-
signments and does not explicitly learn representations for
data. For CCA, KCCA, DCCA, DCCAE, and PVC, we con-
catenate the obtained representations for classification. For
graph-based methods (LMSC and MvC-DMF), we use the
spectral representations for classification. For BMVC and
AE2-Nets, we use the common representations for classifi-
cation. For our MvCLN, we fix the dimensionality of rep-
resentations to 32. Results with other dimensionalities are
shown in Section 2.4.

To achieve classification, we use the SVM classifier con-
tained in the Scikit-Learn package [10] with the default con-
figurations. The representations learned are divided into
training and testing sets with different proportions, denoted
as Trtrain ratio/Tetest ratio, where Trtrain ratio indicates
the proportion of the training set and Tetest ratio indicates
the proportion of the testing set. To avoid randomness due
to data partition, we perform the classification 20 times and
report the mean classification accuracy.

The results are reported in Table 1, from which one could
observe that

• In the partially view-aligned setting, our MvCLN re-
markably outperforms all baselines by a considerable
margin under different Tr/Te. Particularly, MvCLN
achieves an improvement of 26.9% and 12.6% on Cal-
tech101 and Reuters when “Tr/Te” is “8/2”, comparing
with the best baseline. This further verifies the effec-
tiveness of our MvCLN.

• In the fully view-aligned setting, our MvCLN still



Table 1. Classification performance comparisons on four widely-used multi-view datasets, where the best result for each setting is in bold
and “Tr / Te” denotes the size ratio of the training set to testing set. “–” indicates that the method cannot obtain the result due to over-high
time or memory cost.

Aligned Methods Scene-15 Caltech-101 Reuters NoisyMNIST
8 / 2 5 / 5 2 / 8 8 / 2 5 / 5 2 / 8 8 / 2 5 / 5 2 / 8 8 / 2 5 / 5 2 / 8

Partially

CCA (NeurIPS’03) 52.49 51.52 47.95 35.72 34.56 31.47 64.73 64.70 63.91 65.53 65.05 64.07
KCCA (JMLR’02) 50.49 48.82 45.75 32.87 31.29 28.90 64.06 63.95 62.83 57.08 56.63 56.06
DCCA (ICML’13) 51.68 50.64 46.85 35.72 33.97 31.20 65.92 65.80 65.15 60.95 60.90 60.16
DCCAE (ICML’15) 46.24 45.37 43.75 31.95 30.75 28.14 61.88 61.58 60.67 47.42 47.17 46.26
LMSC (CVPR’17) 39.15 38.10 36.88 45.21 43.51 38.02 45.03 44.76 44.49 – – –
MvC-DMF (AAAI’17) 36.74 36.42 34.71 20.78 20.08 18.93 41.59 41.34 41.27 33.04 32.64 32.03
BMVC (TPAMI’18) 50.35 49.83 46.39 33.56 32.83 30.09 64.69 64.20 63.27 72.49 72.03 70.92
AE2-Nets (CVPR’19) 48.19 47.64 42.61 23.30 22.65 20.61 62.74 62.40 60.65 76.58 75.87 73.75

Fully

CCA (NeurIPS’03) 57.44 56.21 51.07 37.70 36.14 32.79 69.13 68.67 67.07 87.85 86.09 82.06
KCCA (JMLR’02) 50.19 50.18 47.26 38.50 36.95 33.72 64.75 64.63 64.63 97.20 97.18 97.08
DCCA (ICML’13) 63.61 61.72 57.3 38.89 37.23 33.75 71.92 72.33 71.54 96.22 96.34 96.08
DCCAE (ICML’15) 50.42 48.84 46.48 38.61 37.53 34.03 72.00 71.65 70.63 96.45 96.37 96.08
LMSC (CVPR’17) 51.28 51.08 48.99 53.92 51.25 42.80 56.09 55.53 54.99 – – –
MvC-DMF (AAAI’17) 43.07 42.45 40.48 48.27 46.71 40.53 42.97 43.08 76.45 75.83 74.05 49.79
BMVC (TPAMI’18) 66.32 65.16 61.73 58.57 55.69 49.92 78.65 78.20 77.73 92.45 92.47 92.05
AE2-Nets (CVPR’19) 72.03 69.76 64.66 35.24 34.38 31.72 65.47 64.82 63.28 89.74 89.33 87.90

Partially PVC (NeurIPS’20) 48.77 45.97 40.46 36.78 36.50 35.54 72.63 72.08 71.11 93.09 93.12 93.06
MvCLN (Mean) 57.93 57.15 55.52 46.69 45.89 43.87 81.77 81.63 81.11 96.19 96.18 96.15

achieves competitive results even though the baselines
are with ground-truth alignment whereas our method
does not. Note that, MvCLN is even better than all the
baselines on the Reuters dataset. The possible reason
is that the category-level alignment may be more help-
ful to performance improvement.

Table 2. Clustering performance comparison on the whole
NoisyMNIST data. The best result is in bold.

Alignment Type Method ACC NMI ARI

Partially MvCLN 97.50 93.09 94.57

Fully

CCA 70.89 52.03 47.91
KCCA 83.43 88.29 82.59
DCCA 89.34 91.40 86.87

DCCAE 89.09 91.37 87.82
BMVC 91.59 83.48 83.79

AE2-Nets 50.83 53.14 40.55

2.3. Clustering on the Whole Dataset

As aforementioned in the manuscript, we carry out all
the tested methods on a subset of NoisyMNIST due to the
over-high computational cost of the Hungarian algorithm
and PVC on the whole dataset. In this section, we carry
out our MvCLN on the whole NoisyMNIST in the partially
view-aligned setting and conduct some cost-feasible base-
lines on the same dataset in the fully view-aligned setting
for comparison. As shown in Table 2, our MvCLN per-
forms better on the full dataset comparing to the case of the
subset, which indicates that more data could do a favor to

our method. Besides, MvCLN remarkably outperforms all
baselines which are even with fully ground-truth alignment.

2.4. Influence of the Dimensionality

In this section, we investigate the classification perfor-
mance of representations with different dimensionalities.
As shown in Table 3, a higher dimensionality often give
better classification performance because more information
is contained in the latent space, while giving a high com-
putational complexity. In our implementations, we fix the
dimensionality of representations to 32 for all the datasets
on the classification task.

2.5. Comparison on the Time Cost

In this section, we quantitatively compare our MvCLN
method with the Hungarian algorithm and PVC in terms of
the time cost. In the experiments, we employ the pack-
age contained in [12] to implement the Hungarian algo-
rithm. As shown in Table 4, our method performs remark-
ably better than the Hungarian algorithm and PVC in terms
of time cost, which verify higher accessibility and scalabil-
ity of our category-level alignment strategy comparing to
the instance-level ones.

2.6. Convergence Analysis

In this section, we investigate the convergence of Mv-
CLN by reporting its loss value, CAR, and clustering per-
formance with the increasing training epoch. From Fig. 1,
one could observe that the loss value drops fast in the first 10
epochs, and then slowly decreases until convergence. For



Table 3. Ablation studies on the dimensionality. The best result
for each setting is in bold and “Tr / Te” denotes the size ratio of
training set to testing set.

Dataset Dimensionality 8/2 5/5 2/8

Scene-15

10d 47.05 46.60 45.30
32d 57.93 57.15 55.52
64d 58.30 57.29 54.71

128d 58.77 57.74 54.65

Caltech-101

10d 33.78 33.32 32.10
32d 46.69 45.89 43.87
64d 47.17 46.45 44.01

128d 46.97 45.98 43.28

Reuters

10d 75.24 75.10 74.84
32d 81.77 81.63 81.11
64d 83.04 82.87 82.32

128d 83.94 83.88 83.19

NoisyMNIST

10d 95.90 95.89 95.87
32d 96.19 96.18 96.15
64d 96.55 96.46 96.41

128d 96.58 96.62 96.55

Table 4. Time cost comparisons. The best result for each setting is
in bold and “–” indicates the method does not involve this phase.

Dataset Method training
time (s)

inferring
time (s)

Scene-15
Hungarian – 2.69

PVC 10,907.27 2.01
MvCLN 155.53 0.72

Caltech-101
Hungarian – 48.87

PVC 11,839.74 7.2
MvCLN 388.58 1.75

Reuters
Hungarian – 289.82

PVC 18,715.34 30.36
MvCLN 790.30 3.48

NoisyMNIST
Hungarian – 3,778.39

PVC 53,070.87 34.36
MvCLN 1,202.77 5.76

CAR and clustering metrics, they continuously increase in
the first 10 epoch and then stay at a high level.
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