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A. Discussion of the Complexity
In the inference stage, our PUM module only adds an

extra O(2d2 + Kd) 1 computational complexity from Eq.
7, 8, and 9. In practice, the extra cost is trivial enough so
that it hardly takes longer to train than a non-PUM model.

B. How PUM works

(a) (b)

Feature Space Feature Space

carrying holding carrying holding

carrying holding

carrying holding

Figure 1. Illustration of semantic ambiguity in feature space. Blue
and orange denote two different classes, curves denote the decision
boundary, and ellipses indicate Gaussian embeddings.

We would like to clarify that, when we discuss about
solving the problems of semantic ambiguity, we mean to
simulate the behavior where different people may describe
the same visual content in different ways. When inspected
in feature space, the three types of semantic ambiguity are
essentially the same. They are all caused by a situation

*Equal contribution.
†Work done in part during an internship at Tencent AI Lab.
‡Yong Zhang, Baoyuan Wu and Yujiu Yang are the corresponding au-

thors. This research was partially supported by the Key Program of Na-
tional Natural Science Foundation of China under Grant No. U1903213
and the Guangdong Basic and Applied Basic Research Foundation (No.
2019A1515011387). Baoyuan Wu is supported by the Natural Science
Foundation of China under grant No. 62076213, the university develop-
ment fund of the Chinese University of Hong Kong, Shenzhen under grant
No. 01001810, and the special project fund of Shenzhen Research Institute
of Big Data under grant No. T00120210003.

1d and K denote the dimension of features fed into the classifier and
the number of sampling in Eq. 9, respectively.

where instances are classified into different classes even
though they share similar visual features. As illustrated in
Figure 1, we take carrying vs. holding as an example.
Our method may map a union region (e.g. a man and an
umbrella) into a Gaussian distribution rather than a deter-
ministic point. The stochasticity enables the feature to pass
across the decision boundary, leading to different plausible
predictions, either carrying or holding, as shown in
Figure 1 (b). By focusing on such stochastic feature rep-
resentation, which is independent of the classifier, we im-
plement diverse predictions and also simulate the semantic
ambiguity.

C. Examples of Generated Scene Graph
We present some complete generated scene graphs in

Figure 2.

D. More Ablation Studies
We present more ablation studies in Table 1. The results

indicate that the training process would reach a local op-
timum without the deterministic loss in Eq. 11. We also
encounter a performance drop when removing the regular-
ization term of Eq. 12.
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Figure 2. Examples of generated scene graph by ensembling two consecutive inferences in the PredCls setting. Blue indicates correctly
classified predicates compared to the ground truth; red indicates the misclassified ones.

Table 1. Comparisons of the R@100 and mR@100 in % of our full model, our model without the conventional deterministic loss in Eq. 11
(w/o dl), and our model without the regularization term of Eq. 12 (w/o rt).

SGDet SGCls PredCls

Methods R@100 mR@100 R@100 mR@100 R@100 mR@100 Mean

Ours w/o dl 31.0 8.0 38.5 11.4 68.0 19.9 29.5
Ours w/o rt 31.2 8.3 38.5 12.2 68.3 21.6 30.0
Ours 31.3 8.9 39.0 12.8 68.3 22.0 30.4


