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Outline
In this supplementary file, we provide more details and

visualizations omitted in our main paper due to 8-pages lim-
its on paper length:

• Sec. S1: Dataset details for our domain adaptation
tasks.

• Sec. S2: Analysis of domain difference and systematic
bias on pseudo labels .

• Sec. S3: Implementation details for SECOND-IoU and
other memory ensemble variants.

• Sec. S4: More experimental results with IoU threshold
at 0.5.

• Sec. S5: Additional ablation studies.
• Sec. S6: Qualitative results.
• Sec. S7: Experiments on other adaptation tasks.

S1. Dataset Overview
We compare four LiDAR 3D object detection datasets as

shown in Table S1. They are different in LiDAR type, beam
angles, point cloud density, size, and locations for data col-
lection. Visual illustrations in Figure S1 obviously show the
different patterns of LiDAR point clouds in terms of distri-
bution and density. Even for data from LiDARs with same
beams (Waymo, KITTI, and Lyft in Figure S1), point clouds
are also different in the range, vertical, and horizontal distri-
butions. For instance, Waymo not only utilizes a small hor-
izontal azimuth of LiDAR, but also clusters LIDAR beams
in the medium of vertical angles (see Figure S1). Both these
LiDAR setups lead to denser point clouds in the collected
data (see # points per scene in Table S1).

We conduct experiments on domain adaptations from the
label-rich domain to label-insufficient domains (i.e. Waymo
→ KITTI, Waymo → Lyft, Waymo → nuScenes) and
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the more challenging domain adaptations across domains
with the different number of LiDAR beams (i.e. Waymo
→ nuScenes and nuScenes → KITTI). On all evaluated
settings, our approach improves the baseline method and
outperforms the existing approach by a significant margin,
demonstrating the efficacy of the proposed approach.

S2. Domain Difference and Systematic bias
S2.1. Lyft Annotation Discrepancies

The Lyft [6] dataset is constructed by a labeling protocol
different from the other three datasets, i.e. the Lyft dataset
does not annotate objects on both sides of the road. For in-
stance, we observe that the objects on the main branch of
the road (w.r.t the ego car) are most likely annotated, while
many objects on both sides might not be annotated. Vi-
sual illustrations of the annotated bounding boxes are shown
in Fig. S2 for the Waymo dataset (blue boxes) and Fig. S3
(blue boxes) for the Lyft dataset.

The differences in annotation protocols will have a neg-
ative influence on the evaluation of domain adaptation re-
sults. When we use the pre-trained model on the Waymo
dataset to evaluate data from the Lyft scenes, our model cor-
rectly predicts the cars on two sides of the road (see green
boxes in Fig S3), which, however, are not annotated by the
Lyft dataset (see blue boxes in Fig. S3). This makes it hard
to evaluate the actual performance boost with the proposed
domain adaptation method. We believe that our method can
obtain a further performance boost if the results are properly
evaluated.

S2.2. Analysis of Domain Discrepancy

We conclude that the domain gap mainly lies in two
folds: (i) content gap (e.g. object size) caused by different
data-capture locations; (ii) point distribution gap caused by
different LiDAR beams. Self-training explicitly closes the
domain gap by reformulating the UDA problem as a target



Dataset LiDAR Type Beam Angles # Points Per Scene† # Training Frames # Validation Frames Location
Waymo [10] 64-beam [-18.0◦, 2.0◦]∗ 160,139 158,081 39,987 USA
KITTI [3] 64-beam [-23.6◦, 3.2◦] 118,624 3,712 3,769 Germany
Lyft [6] 64-beam [-29.0◦, 5.0◦]∗ 69,175 18,900 3,780 USA
nuScenes [2] 32-beam [-30.0◦, 10.0◦] 24,966 28,130 6,019 USA and Singapore

Table S1. Dataset overview. Notice that we use version 1.0 of Waymo Open Dataset. * indicates we obtain the information from [11]. †
means that we count this statistical information only on the validation set.
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Figure S1. Visualization of bird’s eye views (left) and frontal views
(right) for different datasets: Waymo [10], KITTI [3], Lyft [6]
and nuScenes [2]. nuScenes has obviously sparse point clouds
than other three datasets since it is only collected by 32-beam Li-
DAR. Even Waymo, KITTI and Lyft all utilize 64-beam LiDARs,
Waymo is denser than KITTI and Lyft and its beams are clustered
in the medium of vertical angles.

domain supervised problem with pseudo labels, where bet-
ter pseudo labels provide better performance.

S2.3. Systematic Bias on Pseudo Labels

An important systematic bias on pseudo labels is Anno-
tation style bias due to different annotation rules such as
how to annotate (tightness of bounding boxes) and which to

annotate (See Sec. S2.1 in Suppl.). This will make pseudo
labels biased toward the source domain labeling rules, dif-
ferent from target domain GT.

S3. Implementation details

In this section, we give more implementation details in
constructing our adaptation tasks. Further, we illustrate the
component selection of the oracle model, the IoU head of
SECOND [12] as well as the other two memory ensemble
variants: NMS ensemble and bipartite ensemble.

S3.1. Parameter setups

We typically pre-train the detector for 30 epochs on
Waymo and then train 30 epochs for self-training to con-
verge on Waymo → KITTI setting. Besides, we update
pseudo labels every two epoch. The scaling range of ROS
is [0.75, 1.1], ensuring a reasonable scaled car size. For the
QTMB, the two thresholds Tneg and Tpos of triplet box parti-
tion are 0.25 and 0.6, respectively. As for CDA, we split the
total self-training epochs into six stages (i.e., epochs [0, 5),
[5, 10), [10, 15), [15, 20), [20, 25), [25, 30)). More detailed
parameter setups could be found in our released code.

S3.2. Details of Voxel Size and GT Sampling for
Oracle Model.

Here, we provide more details on the voxel size for
SECOND-IOU and the GT sampling strategy for training.

Voxel Size. We derive our Oracle model with voxel size
[0.10m, 0.10m, 0.15m] rather than [0.05m, 0.05m, 0.15m]
To be noted, we adopt this setting in all experiments in-
cluding our pre-trained model and self-training pipeline for
a fair evaluation. The reason why we adopt this setting is
that all our models are trained with the ring view (about
150m × 150m) which will take too much GPU memory
if the voxel size is set to [0.05m, 0.05m, 0.15m] (we can
only set batch size as 1 for SECOND-IoU and totally fail
to run PV-RCNN with such voxel size). We use NVIDIA
GTX 1080Ti with 11G GPU memory for all experiments
and adopt voxel size [0.10m, 0.10m, 0.15m] to achieve the
best trade-off between memory and realization in various
settings as well as frameworks.



Figure S2. Examples of Waymo scenes. The blue boxes are ground-truth bounding boxes.

Method Voxel Size GT Sampling APBEV / AP3D

Oracle (Ours)

[0.10m, 0.10m, 0.15m] 83.29 / 73.45
[0.05m, 0.05m, 0.15m] 85.99 / 76.53
[0.10m, 0.10m, 0.15m]

√
88.08 / 81.52

[0.05m, 0.05m, 0.15m]
√

88.56 / 81.87
Oracle (SN [11]) - unknown 80.60 / 68.90

Table S2. Comparison of different setting (voxel size and GT sam-
pling) for our Oracle model based on SECOND-IoU. We also com-
pare them with the Oracle performance release in the SN [11]
based on PointRCNN. The reported AP results are evaluated on
the moderate difficulty of the car category of the KITTI validation
set at IoU threshold 0.7.

GT Sampling. We do not adopt the GT sampling data
augmentation for all settings for fair comparisons. The rea-
son is that it is unaffordable for the iterative self-training
pipeline to use GT sampling data augmentation since it re-
quires frequently generating a new GT database with up-
dated pseudo labels, which produces a large computation
cost (leveraging GT sampling for self-training takes more
than 3× training time).

More Analysis. Here, we show the oracle results trained
with voxel size [0.05m, 0.05m, 0.15m] and GT sampling
data augmentations. The results are listed in Table S2.
Though our model performance presented in Table 1 in our
paper is obtained using a sub-optimal setup for memory
and computational efficiency, our adaptation results are still
competitive in comparison with results in Table S2. Fur-
thermore, employing PointRCNN as the framework, Or-

acle results in SN [11] even has 4.55% performance gap
to our sub-optimal Oracle model. It is noteworthy that,
the development of the ST3D model is orthogonal with
the above modifications, and ST3D could also benefit from
these training modifications and further boost the perfor-
mance.

We would like to highlight that our focus in this paper is
to demonstrate the effectiveness of ST3D without adopting
various training tricks in 3D object detection. And we be-
lieve the presented comparisons in the main paper are fair
and could assess the actual progress made by our ST3D
pipeline.

S3.3. SECOND-IoU

Given the object proposals from the RPN head in the
original SECOND network, we extract the proposal fea-
tures from 2D BEV features using the rotated RoI-align op-
eration [4]. Then, taking the extracted features as inputs,
we adopt two fully connected layers with ReLU nonlin-
earity [1] and batch normalization [5] to regress the IoU
between RoIs and their corresponding ground-truths (or
pseudo boxes) with sigmoid nonlinearity. During training,
we do not back-propagate the gradient from our IoU head
Liou to our backbone network. We observe the attached
IoU branch could also boost the performance of the baseline
SECOND model, namely SECOND-IoU, if the IoU predic-
tion score is used for NMS.



Figure S3. Examples to show the annotation gap between Lyft and Waymo. The green boxes are prediction results from the Waymo
pre-trained model while the blue boxes are Lyft annotated boxes.

S3.4. Other Memory Ensemble Variants

NMS ensemble is an intuitive solution to match and
merge boxes based on the IoU between two boxes. It
directly removes matched boxes with lower confidence
scores. Specifically, we concatenate historical pseudo
labels and current proxy-pseudo labels to [M̃ t

i ]k =

{[M t
i ]k−1, [L̂

t
i]k} as well as their corresponding confidence

scores to ũki = {uk−ni , uki } for each target sample P ti .
Then, we obtain the final pseudo boxes [M t

i ]k and corre-
sponding confidence score uki by applying NMS with a IoU

threshold 0.1 as

[M t
i ]k, u

k
i = NMS([M̃ t

i ]k, ũ
k
i ). (1)

Bipartite ensemble employs optimal bipartite matching
to pair historical pseudo labels [M t

i ]k−1 and current proxy-
pseudo labels [L̂ti]k and then follow consistency ensemble
to process matched pairs. Concretely, we assume that there
are nm and nl boxes for [M t

i ]k−1 and [L̂ti]k separately.
Then, we search a permutation of nm elements σ ∈ Snm



with the lowest cost as

σ̂ = argmin
σ∈Snm

nm∑
j

Lmatch

(
bj , bσ(j)

)
, (2)

where the matching cost Lmatch is the −IoU between the
matched boxes. Notice that the matched box pairs with IoU
lower than 0.1 would still be regarded as unmatched.

S4. Experimental Results with IoU = 0.5
In this section, we report the APBEV and AP3D with the

IoU threshold 0.5 as a supplement to the experimental re-
sults in our main submission. The results are shown in Ta-
ble S5, S6, S7, S8 and S9, S10. To be noted, IoU threshold
0.7 is a more strict criterion and widely adopted to assess 3D
object detection models for the “car” category [9, 12, 8, 11].

S5. Extra Ablation Studies
In this section, we present more ablation experiments

and analysis. All experiments are conducted with the 3D de-
tector SECOND-IoU on the adaptation setting of Waymo→
KITTI. Our reported AP results are evaluated on the mod-
erate difficulty of the car category of the KITTI dataset.

Method Framework Sequence AP3D Closed Gap
Source Only PointRCNN unknown 21.9 -
SF-UDA3D [7] PointRCNN

√
54.5 56.0%

Oracle PointRCNN 80.1 -
Source Only SECOND-IoU 17.9 -
ST3D SECOND-IoU 54.1 65.1%
Oracle SECOND-IoU 73.5 -

Table S3. Comparison with SF-UDA3D on nuScenes→ KITTI.

Compared with the Contemporary SOTA. As shown
in Table S3, SF-UDA3D is a contemporary work that lever-
ages the consistency of temporal information along with
the point cloud sequences to address the domain shift on
3D object detection. By using only the single-frame point
cloud as input, our ST3D achieves similar performance
while being much closer to the fully-supervised oracle re-
sults.

Quality-aware Confidence Criterion. Here, we investi-
gate the influence of the IoU confidence criterion on the pre-
trained SN model, the self-training pipeline and the fully

Method Confidence APBEV / AP3D Gain

SN
Classification 77.68 / 57.08 -

IoU 78.96 / 59.20 1.28 / 2.12

ST3D (w/ SN)
Classification 82.21 / 69.58 -

IoU 85.83 / 73.37 3.62 / 3.79

Oracle
Classification 84.48 / 73.01

IoU 83.29 / 73.45 -0.99 / 0.44

Table S4. Comparison of different confidence criteria.

supervised oracle model, respectively. As illustrated in Ta-
ble S4, the IoU score can bring performance improvements
for all three settings in comparison with the classification
score. Specifically, the IoU confidence yields a 2.12% gain
for the SN model and a 0.44% gain for the fully super-
vised oracle model in terms of AP3D. More importantly,
our ST3D (w/ SN) self-training pipeline could benefit more
from the IoU criterion, obtaining as much as 3.79% perfor-
mance boost in items of AP3D. This suggests that the IoU
confidence criterion could facilitate the model to produce
high-quality pseudo-labeled data, and ultimately lead to a
much better 3D object detection model.
Quality of Pseudo Labels. To directly investigate how each
component contribute to the quality of pseudo labels, we
utilize AP3D and #TPs to assess the correctness of pseudo
labels. Besides, ATE, ASE and AOE are to measure the
translation, scale and orientation errors (refer to nuScenes
toolkit [2]). As shown in Figure S4, ROS mitigates domain
differences in object size distributions and hence largely re-
duces ASE; with Triplet, QAC and MEV, our method gener-
ates accurate and stable pseudo labels, localizing more #TPs
with fewer errors; and CDA overcomes overfitting and re-
duces both ASE and AOE.

A: Source Only B: ROS C: SN D: ST (w/ SN) + Triplet E: ST (w/ SN) + Triplet + QAC
F: ST (w/ SN) + Triplet + QAC + MEV-C G: ST (w/ SN) + Triplet + QAC + MEV-C + CDA

(a) (b)

Figure S4. Quality of pseudo labels on KITTI training set.

S6. Qualitative Results

Qualitative Results of Random Object Scaling. We
have compared the APBEV and AP3D of our ROS with SN
and Source Only model in the Table 2 of our main pa-
per. Here, we provide qualitative results of the Source Only
model, ROS, SN and Oracle for visual comparisons. As
shown in Fig. S5, the zoom-in regions in the left bottom
box in each sub-figure shows that both SN and ROS can
largely improve the localization accuracy of the pre-trained
model while our ROS does not leverage extra statistical in-
formation on the target domain.

Qualitative Results of ST3D. We provide some qualita-
tive results of our proposed ST3D equipped with SN on the
KITTI validation set as shown in Fig. S6. Our ST3D (w/
SN) could also predict high-quality object bounding boxes
on various scenes with only adaptation and self-training
manner.



(a) Source Only (b) ROS (d) Oracle(c) SN

Figure S5. Comparison of ROS and SN to close object-size level domain gap on Waymo→ KITTI. The green and blue bounding boxes
are detector predictions and GTs, respectively. (a) Source Only: The detector is trained on Waymo without SN or ROS. (b) The detector is
trained with ROS on Waymo. (c) The detector is trained with SN [11] on Waymo. (d) The detector is trained on KITTI.

Method APBEV / AP3D

(a) Source Only 91.52 / 89.94
(b) Random Object Scale (ROS) 88.98 / 87.33
(c) SN 87.18 / 85.91
(d) Ours (w/o ROS) 93.68 / 92.50
(e) Ours (w/ ROS) 90.85 / 89.47
(f) Ours (w/ SN) 92.65 / 92.36

Table S5. Effectiveness analysis of Random Object Scaling (AP
IoU threshold at 0.5).

Method APBEV / AP3D

SN (baseline) 87.18 / 85.91
ST (w/ SN) 86.17 / 85.86
ST (w/ SN) + Triplet 86.61 / 85.90
ST (w/ SN) + Triplet + QAC 91.76 / 90.79
ST (w/ SN) + Triplet + QAC + MEV-C 93.57 / 92.95
ST (w/ SN) + Triplet + QAC + MEV-C + CDA 92.65 / 92.36

Table S6. Component ablation studies (AP IoU threshold at 0.5).
ST represents naive self-training. Triplet means the triplet box
partition. QAC indicates the quality-aware criterion. MEV-C is
consistency memory ensemble-and-voting. CDA means curricu-
lum data augmentation.

Tneg Tpos APBEV / AP3D Tneg Tpos APBEV / AP3D

0.20 0.60 93.34 / 93.01 0.25 0.25 91.48 / 90.93
0.25 0.60 92.65 / 92.36 0.25 0.30 91.17 / 90.70
0.30 0.60 93.16 / 92.00 0.25 0.40 92.05 / 91.63
0.40 0.60 92.97 / 90.96 0.25 0.50 92.81 / 92.35
0.50 0.60 92.19 / 91.47 0.25 0.60 92.65 / 92.36
0.60 0.60 92.16 / 90.40 0.25 0.70 83.08 / 82.90

Table S7. Sensitivity analysis for [Tneg, Tpos] of triplet box partition
(AP IoU threshold at 0.5).

S7. Experimental Result on More Tasks.

Our experiments in the main paper are designed to cover
most practical scenarios (across different LiDAR beam
ways and from label-rich domains to label insufficient do-
mains), and we also rule out some ill-posed settings, such
as we do not consider KITTI and Lyft as source domain
since KITTI lacks of ring view annotations and Lyft has
very difference annotations in our main paper (see Sec. S2.1

Method Memory Voting Merge APBEV / AP3D

ST3D (w/ ME-N)
√

Max 92.72 / 92.40
ST3D (w/ ME-B)

√
Max 92.65 / 92.03

ST3D (w/ ME-C)

√
Max 92.65 / 92.36√
Avg 91.48 / 90.57

× Max 92.66 / 92.22
× Avg 90.80 / 90.50

Table S8. Ablation studies of memory ensemble (different vari-
ants and merge strategies for matched boxes) and memory voting
(AP IoU threshold at 0.5). We denote three memory ensemble
variants: consistency, NMS and bipartite as ME-C, ME-N, ME-B
separately.

Method World Object Intensity APBEV / AP3D

ST3D

× × - 83.31 / 66.73√
× Normal 93.62 / 93.21

×
√

Normal 91.36 / 89.85√ √
Normal 93.57 / 92.95√ √
Strong 92.42 / 91.49√ √

Curriculum 92.65 / 92.36
Table S9. Analysis of data augmentation types and intensities (AP
IoU threshold at 0.5).

in supplementary materials). However, to validate the ef-
fectiveness of our method, we further conduct 5 extra ex-
periments. Tab. S11 shows that, without tuning hyper-
parameters, ST3D still achieves promising results on these
five adaptation tasks.
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