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A1. Proof of Proposition 1
Proof. We prove Proposition 1 for Examples 1-2 separately.

Example 1: Relative Pose Estimation. In relative pose estimation, the known geometric model for the i-th measurement
pair is R◦i ∈ SO(3) and t◦i ∈ S2, where R◦i is the relative rotation, and t◦i is the up-to-scale relative translation between two
images ai and bi. Using (R◦, t◦), we can form the essential matrix E◦i

.
= [t◦i ]×R

◦
i , from which we further compute the

fundamental matrix F ◦i
.
= (Kb

i )−TE◦i (Ka
i )−1, where Ka

i , Kb
i are the camera intrinsics for the two images ai and bi [7].

Now we let the residual function r(·) be the algebraic error [7]:

r(F ◦i , p̃i,k, q̃
b
i,k) = (q̃bi,k)TF ◦i p̃i,k, (A1)

which should vanish if there is no measurement noise, and p̃, q̃b ∈ R3 denotes the homogeneous coordinates of the keypoint
locations. In eq. (A1), F ◦i p̃i,k is called the epipolar line (in fact, F ◦i p̃i,k represents the normal vector of the plane formed by
the epipolar line and the camera optical center).

Because we have adopted a TLS cost function, i.e. ρ(r) = min
{
r2, c̄2

}
(and assume c̄2 is small), obviously, the global

minimizer of problem (7) is the following:

qbi,k = C(pai,k,ai,p
b
i , bi) ∈

{
the epipolar line F ◦i p̃i,k if the epipolar line intersects bi
bi otherwise

, (A2)

which says that the predicted keypoint qbi,k should lie precisely on the epipolar line if the epipolar line has a nonempty
intersection with the image bi (so that the residual (A1) is zero and ρ(r) = 0), or it can be an arbitrary point on the image
otherwise (so that the residual (A1) is nonzero and ρ(r) = c̄2 is very small). In [15], the authors designed another constraint
that enforces cycle consistency, i.e., the back-predicted keypoint of the predicted keypoint should be the original keypoint:

C(qbi,k, bi,pai ,ai) = pai,k. (A3)

Combining eq. A2 and (A3), we can reformulate the original feature learning problem (7) as:

find Cθ (A4)
s.t. C satisfies (A2) and (A3), (A5)

which enforces the correspondence function C (parametrized by θ ∈ RNC ) to map keypoints in ai to their corresponding
epipolar lines (if the epipolar line exists) in bi, and to map the predicted keypoints in bi back to their original keypoints,
which is connected to the cross check criteria mentioned in the main text.

The reformulated problem (A4) is a constrained optimization problem that is not suitable for training neural networks.
Therefore, the last step we do is to move the constraints to the cost function and penalize the violation of the constraints,

*Equal contribution. Work performed during internship at Intel Labs.

1



which is commonly referred to as the Augmented Lagrangian Method (ALM), or the penalty method:

min
θ∈RNC

M∑
i=1

Nai∑
k=1

λepipolar · dist

C(pai,k,ai,p
b
i , bi)︸ ︷︷ ︸

qbi,k

,F ◦i p̃i,k


2

+ λcycle · dist

C
C(pai,k,ai,p

b
i , bi)︸ ︷︷ ︸

qbi,k

, bi,p
a
i ,ai

 ,pai,k


2

, (A6)

where λepipolar, λcycle > 0 are constants chosen by the user. Finally, let the correspondence function be the form in (4), we
recover the loss function in the CAPS paper [15].1 Therefore, the CAPS neural network can be seen as a method to solve the
feature learning problem (7) by solving its Augmented Lagrangian (A6).

Example 2: Point Cloud Registration. In point cloud registration, the known geometric model for the i-th measurement
pairs is the rigid transformation R◦i ∈ SO(3) and t◦i ∈ R3 between the two point clouds ai and bi. Let the residual function
r(·) be the Euclidean distance:

r(R◦i , t
◦
i ,p

a
i,k, q

b
i,k) =

∥∥qbi,k −R◦i pai,k − t◦i ∥∥ , (A7)

which should be zero without measurement noise. Under the TLS cost function ρ(r) = min
{
r2, c̄2

}
, the global minimizer

of problem (7) is

qbi,k = C(pai,k,ai,p
b
i , bi) =

arg min
pb
i,j∈pb

i

r(R◦i , t
◦
i ,p

a
i,k,p

b
i,j) if min

pb
i,j∈pb

i

r(R◦i , t
◦
i ,p

a
i,k,p

b
i,j) < c̄

∅ otherwise
, (A8)

which states that the correspondence function C should output the nearest neighbor of (R◦i p
a
i,k + t◦i ) in pbi if the Euclidean

distance between the nearest neighbor and (R◦i p
a
i,k + t◦i ) is close enough to be considered as an inlier, and outputs nothing

otherwise (i.e., pai,k does not have a corresponding point in pbi ). Therefore, we can reformulate problem (7) as:

find C (A9)
s.t. C satisfies (A8). (A10)

We then use the fact that C is a composition of a feature descriptor and nearest neighbor search in the feature space (cf. eq. (5)
in Example 2), and hence, problem (A9) is further equivalent to finding a descriptor F such that:

find F (A11)

s.t. dist
(
F(pai,k,ai),F(qbi,k, bi)

)
≤ dist

(
F(pai,k,ai),F(pbi,j , bi)

)
,∀pbi,j 6= qbi,k, (A12)

which precisely states that the distance in the feature space between pai,k and the corresponding keypoint qbi,k is smaller than
the distance between pai,k and any other point in pbi . In fact, we can ask for stronger conditions on the feature descriptor F :

find F (A13)

s.t. dist
(
F(pai,k,ai),F(qbi,k, bi)

)
≤ mp, (A14)

dist
(
F(pai,k,ai),F(pbi,j , bi)

)
≥ mn,∀pbi,j 6= qbi,k, (A15)

dist
(
F(pai,k,ai),F(qbi,k, bi)

)
≤ m+ dist

(
F(pai,k,ai),F(pbi,j , bi)

)
, (A16)

that says: (i) the feature distance between the matched keypoint pair pai,k and qbi,k has to be smaller than a predefined margin
mp > 0 (eq. (A14)); (ii) the feature distance between pai,k and all the other non-matched keypoints has to be larger than a
predefined margin mn > mp (eq. (A15)); (iii) the feature distance between non-matched keypoint pairs has to be at least m
larger than the feature distance between matched keypoint pairs (eq. (A16)). Obviously, conditions (A14)-(A16) are sufficient
(but not necessary) for ensuring condition (A12).

1The dist (·) function in (A6) is equivalent to the `2 norm ‖·‖. [15] used the dist (·) instead of dist (·)2. This can be easily seen as the Augmented
Lagrangian if using the constraint

√
dist (·) = 0, instead of dist (·) = 0.



Again, problem (A13) is a constrained optimization that is not suitable for neural network training. Therefore, we develop
its Augmented Lagrangian (for the constraints related to the keypoint pai,k) to be:

L(pai,k, sp, sn, s) = λp
(
mp − dist

(
F(pai,k,ai),F(qbi,k, bi)

)
− sp

)2
+∑

pb
i,j 6=qbi,k

λn
(
dist

(
F(pai,k,ai),F(pbi,j , bi)

)
−mn − sn

)2
+

∑
pb
i,j 6=qbi,k

λ
(
dist

(
F(pai,k,ai),F(pbi,j , bi)

)
− dist

(
F(pai,k,ai),F(qbi,k, bi)

)
−m− s

)2
, (A17)

where sp, sn, s ≥ 0 are nonnegative slack variables. In eq. (A17), the first two terms denote the contrastive loss, while the
last term denotes the triplet loss. The ALM [1] solves the following optimization:

min
F,sp≥0,sn≥0,s≥0

M∑
i=1

Nai∑
k=1

L(pai,k, sp, sn, s). (A18)

Finally, by enforcing sp = sn = s = 0, problem (A18) recovers the metric learning problem in the FCGF paper [5]. Therefore,
the FCGF neural network can be seen as a method to solve the feature learning problem (7) by solving the Augmented
Lagrangian (A18).

A2. Application of SGP on Object Detection and Pose Estimation
Example A1 (Object Detection and Pose Estimation). Given a collection of 3D models {ai}Oi=1, where each model ai ∈
R3×Nai consists of a set of 3D keypoints, let a ∈ R3×Na , Na =

∑O
i=1Nai

, be the concatenation of all 3D keypoints.
In addition, given a corpus of 2D images {bi}Mi=1, where each bi is an RGB image that contains the (partial, occluded)
projections of the 3D models plus some background. Object detection and pose estimation seeks to jointly learn a keypoint
prediction function C and estimate the poses of the 3D models xi = {(Ri,j , ti,j)}j∈S⊂[O] ∈ (SO(3)×R3)|S|, where S ⊂ [O]
is the subset of 3D models observed by the i-th 2D image (|S| denotes the cardinality of the set). In particular, following [16],
let C be a combination of UVW mapping and semantic ID masking, i.e., for each pixel in bi, C predicts which 3D model it
belongs to (from 1 to O, and 0 for background), and what is the corresponding 3D coordinates in the specific model, thus
deciding which point in a is the corresponding 3D point.2

SGP for Example A1. The teacher performs robust absolute pose estimation, a.k.a. perspective-n-point (PnP) [7, 9]. A
good candidate for the teacher is RANSAC and its variants (e.g., using P3P [6]). The student trains a 2D keypoint predictor
under the supervision of camera poses. Recent works such as YOLO6D [14], PVNet [12], and DPOD [16] can all serve as the
student network, despite using different methodologies. As for the verifier, similar to Example 1, it can be designed based
on the estimated inlier rate by RANSAC. Alternatively, one can project the 3D models onto the 2D image using the estimated
absolute poses and compute the overlap ratio (in terms of pixels) between the 2D projection and the estimated semantic ID
mask. To initialize SGP, we can train a bootstrap predictor using synthetic datasets, i.e., by rendering synthetic projections of
the 3D models under different simulated poses, which is common in [16, 12, 14, 2].

A3. Detailed Experimental Data
A3.1. Relative Pose Estimation

In Section 5.1, Fig. 2 plots the rotation statistics for running SGP on the MegaDepth [10] dataset for relative pose estimation.
Here in Fig. A1(a), we plot the translation statistics. In addition, the full statistics of SGP are tabulated in Table A1. Fig. A2
visualizes 9 qualitative examples of relative pose estimation using S-CAPST on the MegaDepth test set.

A3.2. Point Cloud Registration

In Section 5.2, Fig. 4 plots the dynamics of runing SGP on the 3DMatch [17] dataset. Here we provide the full statistics in
Table A2.

2There are many different ways to establish 2D-3D correspondences, see PVNet [12], YOLO6D [14] and references therein.
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(a) SGP translation statistics on MegaDepth.
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(b) SGP on 3DMatch with exchanged train and test.
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(c) SGP on 3DMatch with Horn as teacher.

Figure A1. Supplementary statistics. (a) The translation statistics for using SGP on MegaDepth [10] (rotation statistics shown in Fig. 2 in
the main text). (b) Dynamics of SGP on 3DMatch [17] with training and test sets exchanged, i.e., we train SGP on the smaller test set (1, 623
pairs), but test S-FCGF on the larger training set (9, 856 pairs). (c) Dynamics of SGP on 3DMatch by replacing the original RANSAC10K
teacher with a non-robust Horn’s method [8] as the teacher.

SIFT SGP trained CAPS (S-CAPS)
Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10

Tr
ai

n

PLSR ∗∗ 64.79 84.44 86.14 87.78 88.34 88.80 89.15 89.41 89.62 89.64

Rot. PLIR ∗∗ 92.50 88.83 88.35 88.41 88.25 88.52 88.50 88.57 88.43 88.48

Rot. Recall 87.75 79.33 79.69 80.62 80.70 81.20 81.34 81.57 81.57 81.56 81.68

Trans. PLIR ∗∗ 62.20 53.70 53.58 53.68 54.13 54.09 54.22 54.33 54.43 54.43

Trans. Recall 52.25 46.74 47.30 48.09 48.66 48.87 49.16 49.36 49.54 49.52 49.70

Te
st

R
ec

al
l

Rot., Easy 80.88 85.39 85.49 84.68 85.69 85.79 85.79 86.29 87.09 85.49 86.29

Rot., Moderate 58.06 70.37 68.27 70.37 69.77 69.67 69.27 69.87 68.87 70.07 69.17

Rot., Hard 40.35 48.36 49.38 50.31 49.59 50.10 51.75 50.10 50.72 51.23 51.33

Trans., Easy 48.75 50.55 51.65 52.35 49.75 50.05 52.25 53.05 53.45 50.95 53.05

Trans., Moderate 43.54 50.45 51.35 53.25 50.55 51.65 51.75 52.95 51.75 52.75 50.25

Trans., Hard 33.98 43.53 44.35 45.28 45.17 46.71 47.02 44.46 45.60 46.10 47.13

Table A1. Train and test statistics of running SGP on MegaDepth [10]. SGP setting: retrain = False, verifyLabel = True, verifier criteria:
number of matches larger than 100 and RANSAC estimated inlier rate larger than 10%. Rotation statistics plotted in Fig. 2 in the main text.
Translation statistics plotted in Fig. A1(a).

For qualitative results, in Fig. A3 we showcase multiway registration results on various RGB-D datasets [13, 3, 4, 11] in
addition to Fig. 5. With S-FCGF, rich loop closures can be detected (in green lines), ensuring high-fidelity camera poses for
dense reconstruction. It is worth noting that global registration with trained S-FCGF+RANSAC10K, unlike DGR, can easily run
in parallel on a single graphics card due to its inexpensive memory cost. This results in at least 4× speedup comparing to
DGR in practice when multi-thread loop closure detection is enabled [18].

A3.3. Ablation Study

In Section 5.3, Fig. 6 plots the dynamics of running SGP on 3DMatch with two different algorithmic settings: (a) set retrain
=True and use retrain instead of finetune; (b) set verifyLabel = False and turn off the verifier. Here we provide the full statistics
for (a) and (b) in Table A3 and Table A4, respectively.

Additionally, we show results for two extra ablation experiments on the 3DMatch dataset for point cloud registration.
Exchange the training and test sets. Because SGP requires no ground-truth pose labels, there is no fundamental dif-

ference between the training and test set, except that the training set (9, 856 pairs) is much larger than the test set (1, 623
pairs). Therefore, we ask the question: Can SGP learn an equally good feature representation from the much smaller test
set? Our answer is: it depends on the purpose. We performed an experiment where we trained SGP on the test set, and tested



(a) Easy

(b) Moderate

(c) Hard

Figure A2. Supplementary qualitative results for relative pose estimation on the MegaDepth dataset [10] using S-CAPST .

FPFH SGP trained FCGF (S-FCGF)
Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10

Tr
ai

n

PLSR ∗∗ 69.98 73.91 95.53 95.69 95.74 95.73 95.75 95.73 95.76 95.77

PLIR ∗∗ 92.03 93.42 92.19 92.82 93.02 93.25 93.24 93.43 93.41 93.39

Recall 82.68 89.14 90.92 91.14 91.43 91.76 91.78 91.95 91.97 91.95 92.05

Te
st

R
ec

al
l

Kitchen 80.63 98.42 98.02 98.22 98.02 98.22 98.42 98.02 97.83 98.62 98.42

Home 1 84.62 92.31 93.59 91.03 93.59 92.95 94.23 94.23 94.23 94.23 94.23

Home 2 69.23 77.88 74.04 75.48 75.00 75.96 73.08 75.96 76.92 73.08 75.00

Hotel 1 88.05 96.90 97.35 98.23 97.79 98.23 99.12 98.67 98.67 98.23 98.67

Hotel 2 76.92 87.50 85.58 86.54 90.38 89.42 90.38 90.38 89.42 89.42 89.42

Hotel 3 88.89 85.19 83.33 83.33 79.63 81.48 79.63 85.19 79.63 77.78 79.63

Study 71.23 85.27 86.30 87.67 86.99 85.96 86.99 88.01 86.99 86.30 87.33

MIT 70.13 79.22 79.22 80.52 77.92 77.92 77.92 80.52 76.62 79.22 76.62

Overall 78.44 90.57 90.14 90.63 90.57 90.57 90.70 91.37 90.82 90.45 90.82

Table A2. Train and test statistics of running SGP on 3DMatch [17]. SGP setting: retrain = False, verifyLabel = True, verifier overlap ratio
threshold η: η = 30% for iterations τ = 1, 2, η = 10% for iterations τ = 3, . . . , 10. Statistics plotted in Fig. 4 in the main text.

the learned S-FCGF representation on the much larger training set. For SGP we used retrain = False and verifyLabel = False.
Fig. A1(b) plots the dynamics and Table A5 provides the full statistics. Two observations can be made: (i) Exchanging the
training and test set has almost no effect on the recall of S-FCGF on the test set (cf. Table A5 vs Table A2-A4). This means
that, if one only cares about the performance of the learned representation on the test set, then running SGP directly on the
target test set is sufficient. (ii) Although exchanging the training and test set does not hurt the recall on the test set, it indeed
decreases the recall on the training set by more than 10%. This suggests that a small training set has the shortcoming of
overfitting and the learned representation fails to generalize to a larger dataset. Therefore, if one cares generalization of the
learned representation, then a larger training set is still preferred. Nevertheless, this ablation study demonstrates the power
of the alternating minimization nature of SGP, that is, SGP is able to find a sufficiently good local minimum.

Use a non-robust solver as the teacher. All the experiments so far showed successes of the teacher-student loop, and
the robustness of the SGP algorithm to imperfections of both the student and the teacher (noisy geometric pseudo-labels).



(a) copyroom from Stanford RGBD [3]. (b) long_office from TUM RGBD [13].

(c) bedroom from Indoor LIDAR RGBD [11]. (d) truck from Redwood Objects [4].

Figure A3. Supplementary qualitative results for 3D registration. Multi-way reconstruction using S-FCGF+RANSAC10K as the global
registration method succeeds on various unseen RGB-D datasets. Blue lines: odometry. Green lines: loop closures.

FPFH SGP trained FCGF (S-FCGF)
Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10

Tr
ai

n

PLSR ∗∗ 68.48 95.68 95.61 95.61 95.69 95.64 95.60 95.61 95.67 95.65

PLIR ∗∗ 90.86 91.16 92.27 92.40 92.29 92.47 92.52 92.61 92.95 92.44

Recall 79.24 89.53 90.60 90.69 90.68 90.79 90.77 90.88 91.20 90.72 90.84

Te
st

R
ec

al
l

Kitchen ∗∗ 97.23 97.63 98.22 97.83 98.42 97.83 97.83 97.23 98.42 98.22

Home 1 ∗∗ 91.67 93.59 94.23 95.51 94.87 93.59 95.51 95.51 91.03 93.59

Home 2 ∗∗ 73.56 71.63 76.92 73.56 75.00 74.04 72.60 76.44 75.00 75.00

Hotel 1 ∗∗ 96.90 96.90 96.90 96.46 96.90 96.46 96.90 98.23 97.35 96.90

Hotel 2 ∗∗ 85.58 89.42 92.31 88.46 87.50 90.38 88.46 88.46 86.54 91.35

Hotel 3 ∗∗ 85.19 88.89 83.33 81.48 83.33 83.33 83.33 85.19 85.19 83.33

Study ∗∗ 82.88 84.59 86.64 88.36 88.70 87.67 87.67 86.30 87.33 86.64

MIT ∗∗ 85.71 83.12 79.22 79.22 83.12 80.52 83.12 77.92 77.92 84.42

Overall ∗∗ 89.34 89.96 91.07 90.57 91.19 90.57 90.63 90.70 90.39 90.94

Table A3. Train and test statistics of running SGP on 3DMatch [17]. SGP setting: retrain = True, verifyLabel = True, verifier overlap ratio
threshold η: η = 10% for all iterations τ = 1, . . . , 10. Statistics plotted in Fig. 6(a) in the main text.

However, we ask another question: Can we, intentionally, make SGP fail? Our answer is: yes if we try badly. We performed
an experiment running SGP on 3DMatch, this time replacing RANSAC10K with the non-robust Horn’s method [8]. We remark
that Horn’s method is a subroutine of RANSAC and in practice nobody would use Horn’s method alone in the presence of
outlier correspondences. Nevertheless, for the purpose of ablation study, we adopted this pessimistic choice. Again, for SGP
we used retrain = False, verifyLabel = True with a constant overlap ratio threshold η = 10%. Fig. A1(c) shows the dynamics. We



FPFH SGP trained FCGF (S-FCGF)
Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10

Tr
ai

n

PLSR ∗∗ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PLIR ∗∗ 79.24 88.82 90.86 91.25 91.63 91.59 91.93 92.12 91.89 91.97

Recall 79.24 88.82 90.86 91.25 91.63 91.59 91.93 92.12 91.89 91.97 92.05

Te
st

R
ec

al
l

Kitchen ∗∗ 97.43 98.22 98.62 97.83 98.62 98.81 98.22 98.62 98.22 98.22

Home 1 ∗∗ 92.31 94.23 91.67 94.23 94.23 92.95 93.59 93.59 94.87 92.95

Home 2 ∗∗ 74.04 75.00 72.12 77.40 74.04 74.04 73.56 74.04 73.56 73.08

Hotel 1 ∗∗ 95.58 98.23 97.35 97.79 99.12 98.23 98.67 96.90 97.79 97.35

Hotel 2 ∗∗ 90.38 93.27 88.46 90.38 88.46 87.50 86.54 88.46 88.46 89.42

Hotel 3 ∗∗ 88.89 85.19 83.33 87.04 85.19 85.19 81.48 85.19 83.33 81.48

Study ∗∗ 84.59 87.33 87.67 86.64 88.01 88.01 87.67 88.70 88.70 87.67

MIT ∗∗ 76.62 83.12 77.92 84.42 79.22 80.52 80.52 84.42 83.12 83.12

Overall ∗∗ 89.65 91.44 90.26 91.37 91.19 91.00 90.63 91.19 91.13 90.63

Table A4. Train and test statistics of running SGP on 3DMatch [17]. SGP setting: retrain = False, verifyLabel = False. Statistics plotted in
Fig. 6(b) in the main text.

FPFH SGP trained FCGF (S-FCGF)
Statistics (%) Bootstrap 1 2 3 4 5 6 7 8 9 10

Tr
ai

n

PLSR ∗∗ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PLIR ∗∗ 73.32 86.20 88.05 89.40 89.96 91.00 90.76 91.37 90.70 90.88

Recall 73.32 86.20 88.05 89.40 89.96 91.00 90.76 91.37 90.70 90.88 90.82

Kitchen ∗∗ 94.66 96.84 98.42 98.81 99.21 99.60 99.41 99.01 99.21 99.21

Home 1 ∗∗ 91.03 89.74 93.59 95.51 95.51 94.87 94.87 95.51 96.15 95.51

Home 2 ∗∗ 70.67 70.67 71.63 69.23 71.15 70.19 74.04 72.60 72.12 72.60

Hotel 1 ∗∗ 94.69 96.02 97.35 98.67 98.67 99.12 99.12 99.12 99.12 99.12

Hotel 2 ∗∗ 77.88 79.81 77.88 80.77 84.62 83.65 86.54 83.65 84.62 83.65

Hotel 3 ∗∗ 83.33 85.19 81.48 85.19 88.89 87.04 85.19 83.33 84.19 85.19

Study ∗∗ 79.79 84.93 87.33 86.64 88.36 87.33 87.67 87.33 87.67 86.99

MIT ∗∗ 75.32 75.32 75.32 79.22 79.22 80.52 80.52 77.92 76.62 79.22

Test on train set 79.24 81.94 81.56 80.72 81.06 80.73 80.87 80.63 80.48 80.54 80.44

Table A5. Train and test statistics of running SGP on 3DMatch [17] with training and test sets exchanged, i.e., we train SGP on the smaller
test set (1, 623 pairs), but test S-FCGF on the larger training set (9, 856 pairs). SGP setting: retrain = False, verifyLabel = False. Statistics
plotted in Fig. A1(b). We see SGP demonstrates overfitting while training on the smaller test set: S-FCGF achieves equally good (91.37%)
recall on the test set, but only achieves below 82% recall on the training set (while in Tables A2-A4 S-FCGF has over 92% recall on the
training set). Statistics plotted in Fig. A1(b).

see that the PLIR is always below 20%, meaning that 8 out of 10 geometric labels passed to FCGF training are wrong. In this
case, the learned S-FCGF representation keeps getting worse, as shown by the decreasing recalls on both the training and test
set. Note that for testing, we actually used RANSAC10K as the registration solver to be consistent with other experiments we
performed on 3DMatch. However, even with RANSAC10K, the test recall drops to below 30%. Therefore, this ablation study
shows the necessity of a robust teacher for SGP to work. Fortunately, we have plenty of robust solvers, as discussed in the
main text. So we think this is a strength of SGP, rather than a weakness.
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