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In this supplementary material, we first provide details

of the image synthesis loss functions in section 1. In sec-

tion 2, we show additional qualitative reconstruction results

by our method for different scans on the DTU dataset. In

section 3, we provide visualization of the pseudo depth la-

bels generated by our self-supervised learning framework.

In section 4, we show the pseudo depth labels generated by

each iteration of our self-supervised learning framework. In

section 5, we provide more ablation experiments. In sec-

tion 6, we provide more discussions regarding the proposed

method.

1. Image synthesis loss

In our approach, as introduced in section 3.2, we use a

weighted combination of four loss functions,

lsyn = α1lg + α2lssim + α3lp + α4ls, (1)

where lg is the image gradient loss, lssim is the structure

similarity loss, lp is the perceptual loss, ls is the depth

smoothness loss, and αi sets the influence of each loss.

Image gradient loss is defined as the L1 distance between

the gradient of input reference image ∇Il0(x) and the syn-

thesized image ∇Ili→0(x) for each source view i and each

pyramid level l,

lg =
L∑

l=0

1

N

N∑

i=1

∑

x∈Ω

||∇Ili→0(x)−∇Il0(x)||1. (2)

where Ω is the set of valid pixels of the synthesized image.

Structure similarity loss enforces the contextual similarity

between a synthesized image and the input reference im-

age. Specifically, we use the Structure Similarity Index [6]

to measure the contextual similarity. This index increases as

the structure similarity between the images increases, with

a range [−1, 1]. We formulate the loss as the negative of

SSIM between each synthesized image and input refer-

ence image,

lssim =

L∑

l=0

1

N

N∑

i=1

1− SSIM(Ili→0, Il0). (3)

Perceptual loss also encourages high-level contextual simi-

larity between images [2]. This loss is defined as the L1 dis-

tance in the feature space of a shared weight perceptual net-

work taking each image as input [2]. In our experiments, we

use a VGG model [4] and extract features from 3th,8th,15th
and 22th layers. Therefore, we formulate the loss as fol-

lows,

lp =

L∑

l=0

1

N

N∑

i=1

∑

j∈[3,8,15,22]

||V GG(Ili→0, j)−V GG(Il0, j)||1.

(4)

Depth smoothness loss encourages local depth smooth-

ness. This term encourages depth smoothness with respect

to the alignment of image and depth discontinuities, which

is measured by the gradient of color intensity of input refer-

ence image. We define this loss as follows,

lsm =

L∑

l=0

∑

x∈Ω

|∇uD̃
l(x)|e−|∇uIl

0
(x)|+|∇vD̃

l(x)|e−|∇vIl
0
(x)|

(5)

where ∇u and ∇v refer to the gradient on x and y direction,

and D̃ = D/D̄ is the mean-normalized inverse depth [1].

2. Qualitative results on DTU dataset

Fig. 1 shows additional reconstruction results by our

self-supervised method on the DTU dataset. As shown, our

self-supervised model can achieve similar reconstruction re-

sults comparing with the supervised model.

3. Pseudo depth labels visualization

Fig. 2 and Fig. 3 provide visualization of pseudo depth

labels generated by our self-supervised learning framework.

As shown, our method can generate high quality pseudo

depth labels for rich-texture areas. However, our method

can not generate pseudo depth labels for severely texture-

less regions.
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Figure 1. DTU Dataset. Representative point cloud results. Best viewed on screen.
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Figure 2. Pseudo depth labels generated by the self-supervised learning framework. Areas with no pseudo depth labels or no ground-truth

depth are marked as blue in the error visualization. Best viewed on screen.
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Figure 3. Pseudo depth labels generated by the self-supervised learning framework. Areas with no pseudo depth labels or no ground-truth

depth are marked as blue in the error visualization. Best viewed on screen.
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Figure 4. Pseudo depth labels generated by each iteration of the iterative self-supervised learning framework. (a) Ground-truth depth map.

(b-e) Pseudo depth labels generated by 1-4 iteration of the self-supervised learning framework. (f) Reference image. (g-j) Error of each

iteration of the pseudo depth labels. Areas with no pseudo depth labels are marked as blue in the error visualization. Best viewed on screen.

4. Pseudo labels generated on each iteration

Fig. 4 shows visualization of pseudo depth labels gener-

ated by the different iterations of the self-supervised learn-

ing framework. As shown, pseudo depth labels tend to be-

come stable after the second iteration.

5. Additional Ablation Experiments

Use geometric MVS methods as initialization.

We use a traditional MVS method OpenMVS to gener-

ate the pseudo labels to replace our unsupervised learning

process on DTU dataset. Specifically, we render a depth

map from the mesh generated by OpenMVS and treat it as

the label for the first iteration of the iterative training. As

shown in Tab. 1, using OpenMVS outputs as pseudo labels

can achieve similar performance as our proposed initializa-

tion method after 3 iterations of self-supervised learning.

Method\f-score Init Iter. 1 Iter. 2 Iter. 3

OpenMVS Init. 73.70% 76.86% 87.95% 88.02%

Ours Init. 77.06% 88.16% 88.42% 88.49%

Table 1. Performance with different initialization method.

6. Discussions

Runtime Despite the limitation on texture-less area men-

tioned in main paper, another limitation appears on the run-

time of proposed self-supervised learning method. Each it-

eration of the self-training process takes around 15 hours on

our machine, which adds up to days for several iterations

of self-training or fine-tuning on novel data. For compari-

son, the supervised CVP-MVSNet takes around 10 hours.

A classical MVS method such as the OpenMVS even does

not need any training to achieve compromised results. Im-

proving the efficiency of the proposed learning method can

be an direction of future research.

Limitation of geometric processing Another concern ap-

pears on the geometric filtering and fusion methods we used

to refine the pseudo depth label. The traditional geomet-

ric methods such as consistency check and Screened Pois-

sion Surface Reconstruction have their limitations. Specifi-

cally, the SPSR is a non-learning, indifferentiable and time-

consuming step, which might be too heavy for fine-tuning

on novel data. It also have limited performance on very

complex scenes. Improving pseudo label processing meth-

ods can be a direction of future research.
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