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1. Method Details
1.1. Proof of Theorem 1

Theorem 1. Supposing s € {2,3,---} is the size of up-
sampling ratio between adjacent levels, 1 < C < 8/T is a
constant value and O(-) represents the tight upper bound,
then the complexity O of exhaustive search process is

0 = WoHDy O(s*L0). (1)

Proof. AsW; = Wy st and so does H; and D;, we get O; =
W,H;D; = Ops>. We then rewrite O = Zié O;as O =

L 3(L+1) _ 3
Zl:O OQS3l = OO% < 0083L S3871. We use C' to
3 3 .
represent —s— where 1 < 7 < % because s is at least

2.

1.2. Dense Matching

As shown in Figure 1, we build the full cost volume via
cross-correlation after warping the right feature maps. We
then incorporate eright 3D convolutions to rectify the cost
volume. A softmax operation is also used to turn cost vol-
ume into a probability volume. The dense disparity map
is finally obtained via the regression of probability volume
and the sampled disparities.
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Figure 1: Architecture Of dense matching module. 3 x 3 x 3
is the kernel size of 3D convolution, and 1 x 1 X 1 is the
stride size.

1.3. Backpropagation of Sparse Matching
In the main draft, sparse matching is formulated as fol-
lows:

Ci(h,w,d) =< Fy(h,w), Fy(h,w —d) >, (2)

eCl(h,w,d)fClm"'m(h,w)

Zd:o ecl(h,w,d)—clmax(h,w) ’ (3)

Ci*(h,w) = max Ci(h,w,d),

P(h,w,d) =

Di(h,w) =Y Pi(h,w,d) - d. 4)
d=0

For the convenience of the derivation of the backpropaga-
tion, we rewrite the above equations as

Du(h,w) = S a0 e Ei(h,w), Fy(hyw — d) > —CP*(h,w) - d
WH )= S o< Fi(hw) Fi(hw—d)> =GP (hw) ‘
d=0

(&)



NonOcc All
Models Res time (s) time/MP (s) time/GD (s)|bad 2.0 bad 4.0 avgerr rms A90 A99|bad 2.0 bad 4.0 avgerr rms A90 A99
PSMNet [1] Q 0.64 2.62 32.2 42.1 235 6.68 19.4 17.0 84.5| 472 292 878 23.3 22.8 106
DeepPruner [2]|| Q  0.13 0.41 4.38 30.1 159 480 14.7 104 67.7| 364 219 6.56 18.0 17.9 83.7
GANet [9] H 8.3 6.33 16.4 18.9 11.2 122 354 40.0 84.5| 24.9 16.3 15.8 42.0 50.9 194
AANet [8] H 456 4.17 11.0 25.2 19.6 8.88 26.2 242 131 | 31.8 258 12.8 32.8 414 142
ours F 051 0.10 0.23 20.2 11.2  3.72 125 10.1 46.8| 27.0 17.0 5.37 159 15.0 72.2

Table 1: The comparison of algorithms on Middlebury-v3 dataset (Q: quadratic resolution, H: half resolution, F: full resolu-
tion).

We then compute the backpropagation over E, (h,w) as end, we use a weighted combination of smooth L1 loss over
. them:
OD;(h,w) A A
ey 2 b D Ly= 1 * smootHy, (D; — GTy)

+ 79 * smootHy, (D; — GTy)

e<FL(hw) Fi(hw—d)>=CP™ (hw)) R (11)
§ 3 e H ) B ) % x smootH, (Di = GTy My )
~ ’ + 74 * smootHp, (D] — GT;).
(6)
oL oL b [)l(}% w) Finally, we train our model using end-to-end learning
8E(h, w, ¢) = 8155(/1, w) 8Fl(h, w, ¢) : 7 with following loss function:

=L

As for Fy(h, w), we compute its backpropagation as
(h, w) L=1LoWo+ Y (L Wi+ LPPw)),  (12)

w4 d) _ (g i )(d — Du(how + ) =
oy (h,w,c) , .
e<Fl(h,w+d'),ﬁ‘l(h,w)>7C;“a"(h,w+d’)) where W; and w; are the loss weight.
/3 esfilhwtd) Rilhwtd =d>=C e td)) s More Details on Experiment
d=0
®) We set 71 = 0.5, 72 = 0.2, 73 = 0.2, 74 = 0.1, and
A wo = 0.037, w; = 0.11, wy = 0.33, ws = 1, w} = 0.01.
oL 3 oL aD; (h,w + d') 0 ! 2 ’ !
8Fl(ha w, C) d'=0 6bl (ha w + d/) aE (h/) w, C) 2-1. Middlebury'v3

® We present the comparison of results on the Middle-
1.4. Loss buryv3 dataset [7]. We first give a brief description of the
metric. time/MP: time normalized by the number of pixels
(sec/megapixels). time/GD: time normalized by the num-
ber of disparity hypotheses (sec/(gigapixels*ndisp)). bad
xx: percentage of bad pixels whose error is greater than xx.
avgerr: average absolute error in pixels. rms: root mean-
square disparity error in pixels. Axx: Xxx-percent error quan-
tile in pixels. As shown in Table 1, our model achieves the
best speed on time/MP and time/GD. our model also obtains

In addition to the unsupervised loss £P"P for detail loss
detection, we also design a supervised loss for disparity es-
timation. As there is only ground truth GT of disparity
map at the highest level, we downsample the ground truth
to each level GT;. At the lowest level, we use smooth L1
between the predicted dense disparity map and the down-
sampled ground truth:

Lo = smootHy, (Do — GTp) almost the best results on most metrics about accuracy.
= ) ,
_Jose,  iffel<l (0 55 KITTI2015
smootHr, (€) = { | €| —0.5, otherwise °
Despite the comparison with state-of-the-art methods in
At higher levels, there are four intermediate results at each the main draft, we also give a visualization of our results
level, including the upsampled dense disparity map from on the KITTI 2015 dataset [4, 5, 6]. As shown in Figure

previous level Dj, the sparse disparity map Dy, the fused 2, our model achieves competitive estimations in various
disparity map D; and the refined disparity map D;. To this scenarios.
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Figure 2: Visualization of results on KITTI2015 dataset.

2.3. SceneFlow

We give a visualization of our results on the Scene Flow

dataset [3]. As shown in Figure 3, our model achieves great
results in different areas, like thin or small objects and large
texture-less areas.
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Figure 3: Visualization of results on Scene Flow dataset.
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