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1. Method Details
1.1. Proof of Theorem 1

Theorem 1. Supposing s ∈ {2, 3, · · · } is the size of up-
sampling ratio between adjacent levels, 1 < C ≤ 8/7 is a
constant value and O(·) represents the tight upper bound,
then the complexity O of exhaustive search process is

O = W0H0D0 O(s3LC). (1)

Proof. As Wl = W0s
l and so does Hl and Dl, we get Ol =

WlHlDl = O0s
3l. We then rewrite O =

∑l=L
l=0 Ol as O =∑L

l=0 O0s
3l = O0

s3(L+1)−1
s3−1 < O0s

3L s3

s3−1 . We use C to

represent s3

s3−1 where 1 < s3

s3−1 ≤
8
7 because s is at least

2.

1.2. Dense Matching

As shown in Figure 1, we build the full cost volume via
cross-correlation after warping the right feature maps. We
then incorporate eright 3D convolutions to rectify the cost
volume. A softmax operation is also used to turn cost vol-
ume into a probability volume. The dense disparity map
is finally obtained via the regression of probability volume
and the sampled disparities.
∗Corresponding author
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Figure 1: Architecture Of dense matching module. 3×3×3
is the kernel size of 3D convolution, and 1 × 1 × 1 is the
stride size.

1.3. Backpropagation of Sparse Matching

In the main draft, sparse matching is formulated as fol-
lows:

Cl(h,w, d) =< F́l(h,w), F̀l(h,w − d) >, (2)

Pl(h,w, d) =
eCl(h,w,d)−Cmax

l (h,w)∑
d=0 eCl(h,w,d)−Cmax

l (h,w)
,

Cmax
l (h,w) = max

d
Cl(h,w, d),

(3)

D̂l(h,w) =
∑
d=0

Pl(h,w, d) · d. (4)

For the convenience of the derivation of the backpropaga-
tion, we rewrite the above equations as

D̂l(h,w) =

∑
d=0 e<F́l(h,w), F̀l(h,w − d) > −Cmax

l (h,w) · d∑
d=0 e<F́l(h,w),F̀l(h,w−d)>−Cmax

i (h,w)
.

(5)



Models Res time (s) time/MP (s) time/GD (s)
NonOcc All

bad 2.0 bad 4.0 avgerr rms A90 A99 bad 2.0 bad 4.0 avgerr rms A90 A99
PSMNet [1] Q 0.64 2.62 32.2 42.1 23.5 6.68 19.4 17.0 84.5 47.2 29.2 8.78 23.3 22.8 106

DeepPruner [2] Q 0.13 0.41 4.38 30.1 15.9 4.80 14.7 10.4 67.7 36.4 21.9 6.56 18.0 17.9 83.7
GANet [9] H 8.53 6.33 16.4 18.9 11.2 12.2 35.4 40.0 84.5 24.9 16.3 15.8 42.0 50.9 194
AANet [8] H 4.56 4.17 11.0 25.2 19.6 8.88 26.2 24.2 131 31.8 25.8 12.8 32.8 41.4 142

ours F 0.51 0.10 0.23 20.2 11.2 3.72 12.5 10.1 46.8 27.0 17.0 5.37 15.9 15.0 72.2

Table 1: The comparison of algorithms on Middlebury-v3 dataset (Q: quadratic resolution, H: half resolution, F: full resolu-
tion).

We then compute the backpropagation over F́l(h,w) as

∂D̂l(h,w)

∂F̂l(h,w, c)
=
∑
d=0

(F̂l(h,w − d, c)(d− D̂l(h,w)

e<F́l(h,w),F̀l(h,w−d)>−Cmax
i (h,w))

/
∑
d=0

e<F́l(h,w),F̀l(h,w−d)>−Cmax
i (h,w),

(6)
∂L

∂Ḟl(h,w, c)
=

∂L
∂D̂l(h,w)

∂D̂l(h,w)

∂Ḟl(h,w, c)
. (7)

As for F̀l(h,w), we compute its backpropagation as

∂D̂l(h,w + d′)

∂F̀l(h,w, c)
=(F́l(h,w + d′, c)(d′ − D̂l(h,w + d′)

e<F́l(h,w+d′),F̀l(h,w)>−Cmax
i (h,w+d′))

/
∑
d=0

e<F́l(h,w+d′),F̀l(h,w+d′−d)>−Cmax
i (h,w+d′)).

(8)

∂L
∂F̀l(h,w, c)

=
∑
d′=0

∂L
∂D̂l (h,w + d′)

∂D̂l (h,w + d′)

∂F̀l(h,w, c)
(9)

1.4. Loss

In addition to the unsupervised loss LDLD
l for detail loss

detection, we also design a supervised loss for disparity es-
timation. As there is only ground truth GT of disparity
map at the highest level, we downsample the ground truth
to each level GTl. At the lowest level, we use smooth L1
between the predicted dense disparity map and the down-
sampled ground truth:

L0 = smootHL1
(D0 −GT0),

smootHL1
(ε) =

{
0.5ε2, if | ε |< 1
| ε | −0.5, otherwise

.
(10)

At higher levels, there are four intermediate results at each
level, including the upsampled dense disparity map from
previous level D′l, the sparse disparity map D̂l, the fused
disparity map D̄l and the refined disparity map Dl. To this

end, we use a weighted combination of smooth L1 loss over
them:

Ll = γ1 ∗ smootHL1
(Dl −GTl)

+ γ2 ∗ smootHL1
(D̄l −GTl)

+ γ3 ∗ smootHL1(D̂l −GTl MF́Al
)

+ γ4 ∗ smootHL1(D′l −GTl).

(11)

Finally, we train our model using end-to-end learning
with following loss function:

L = L0 ·W0 +

l=L∑
l=1

(Ll ·Wl + LDLD
l w′l), (12)

where Wl and w′l are the loss weight.

2. More Details on Experiment

We set γ1 = 0.5, γ2 = 0.2, γ3 = 0.2, γ4 = 0.1, and
w0 = 0.037, w1 = 0.11, w2 = 0.33, w3 = 1, w′1 = 0.01.

2.1. Middlebury-v3

We present the comparison of results on the Middle-
buryv3 dataset [7]. We first give a brief description of the
metric. time/MP: time normalized by the number of pixels
(sec/megapixels). time/GD: time normalized by the num-
ber of disparity hypotheses (sec/(gigapixels*ndisp)). bad
xx: percentage of bad pixels whose error is greater than xx.
avgerr: average absolute error in pixels. rms: root mean-
square disparity error in pixels. Axx: xx-percent error quan-
tile in pixels. As shown in Table 1, our model achieves the
best speed on time/MP and time/GD. our model also obtains
almost the best results on most metrics about accuracy.

2.2. KITTI 2015

Despite the comparison with state-of-the-art methods in
the main draft, we also give a visualization of our results
on the KITTI 2015 dataset [4, 5, 6]. As shown in Figure
2, our model achieves competitive estimations in various
scenarios.
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Figure 2: Visualization of results on KITTI2015 dataset.

2.3. SceneFlow

We give a visualization of our results on the Scene Flow
dataset [3]. As shown in Figure 3, our model achieves great
results in different areas, like thin or small objects and large
texture-less areas.
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Figure 3: Visualization of results on Scene Flow dataset.
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