
Supplementary Materials for “Joint-DetNAS: Upgrade Your Detector with NAS,
Pruning and Dynamic Distillation”

Lewei Yao1* Renjie Pi1∗ Hang Xu2† Wei Zhang2 Zhenguo Li2 Tong Zhang1

1Hong Kong University of Science and Technology 2Huawei Noah’s Ark Lab

A. Implementation Detail
A.1. NAS

A.1.1 Search Space

We adopt the ResNet-based detectors as the search space
due to its popularity in the detection community. Specifi-
cally, the backbone architecture is divided into four stages,
where the feature resolution halves and the number of out-
put channels doubles at the beginning of each stage. Ba-
sic block is used for R18-based students, while Bottleneck
Block is used for other students and the teacher pool. In
the following sections, “layer” and “block” are used inter-
changeably.

A.1.2 Student Morphism

The student’s action spaces contains four actions: (1)
Channel Pruning, (2) Layer Pruning, (3) Add-Layer and
(4) Rearrange.

We specify the definition of fevolve for each action.

• Pruning The parameters are first ranked globally by
an importance measure, then the least important ones
are removed while the rest are inherited. For Channel
Pruning, the importance measure is the magnitude of
each BN’s channel weights. For Layer Pruning, the
importance measure is the parameter’s L1 norm.

• Add-Layer aims to introduce extra capacity into the
detector while maintain the performance of the pre-
decessor. This is realized by initializing the block
as an identity mapping. Specifically, for each block
in ResNet whose output can represented as H(x) =
F (x) + x, we make F (x) equal to 0 by applying
Dirac initialization [8] to the CONV layers and zero-
initializing the last BN layer[4, 3]. The new layer is
appended to the end of the selected stage.

• Rearrange, a stage is firstly selected, then the layer at
the beginning or the end of the stage is moved to its

*Equal contribution
†Corresponding author: xbjxh@live.com

neighboring stage by modifying its stride, the parame-
ters can then be directly inherited.

A.1.3 Elastic Teacher Pool (ETP)

Subnet Space. In our implementation of the ETP, the super-
network is set to have the same depth and 1.5x width as
ResNet101. Specifically, the depths and the width coeffi-
cients are [3, 4, 23, 3] and [1.5, 1.5, 1.5, 1.5] at each stage,
respectively. During our integrated progressive shrinking
training, the subnet space is gradually expanded to include
smaller subnets. At the final phase, the smallest subnet in
the space has depths [2,2,2,2] and width coefficients [1.0,
1.0, 1.0, 1.0] at each stage, all the subnets in between can
be sampled and trained. The width coefficients can be 1.0,
1.25 or 1.5.

Dynamic Resolution. We use 512 × 512, 800 × 600,
1080 × 720 and 1333 × 800 as the predefined resolutions,
from which one is randomly sampled during each training
iteration.

Phases of integrated progressive shrinking. (1) Train-
ing the super-network: the super-network is firstly trained
with dynamic resolution, which is later used as the teacher
detector to distill other subnets. (2) First shrinking phase:
the depths and widths of the subnet space are expanded to
[3,4,12-23,3] and [1.25-1.5,1.25-1.5,1.25-1.5,1.25-1.5] , re-
spectively. (3) Second shrinking phase: the depths and
widths of the subnet space are expanded to [2-3,2-4,2-23,2-
3] and [1.0-1.5,1.0-1.5,1.0-1.5,1.0-1.5] , respectively. Dur-
ing (2) and (3), one subnet is randomly sampled from the
subnet space and trained in each training iteration. Dynamic
resolution is adopted throughout the training process.

Training details. The teacher pool is trained from
scratch on 32 GPUs with batch size 2 × 32 (2 for each
GPU). Synchronized BN is adopted to normalize input dis-
tribution across multiple nodes, which addresses the issue
cause by small batch size. Step learning rate schedule is
used throughout training. The initial learning rate and train-
ing epochs for the 3 phases are described in Table 1.



Phase Initial
Epochslearning rate

Super-net training 0.12 48
Shrinking phase 1 0.04 24
Shrinking phase 2 0.04 36

Table 1: Training schedule at each phase of our ETP.

A.1.4 Details for search process

The student’s architecture is fixed during the first 5 search
iterations to make the search more stable. At the beginning
of each search iteration, one student-teacher pair is sampled
from the topk list according to the score ranking. The size
of topk list is set to 5. In fscore, β is set to 0.8 for all base
detector; α is set to 0.1 for X101 to encourage higher perfor-
mance, while it is set to 0.4 for other base detectors. During
fast evaluation phase,

{
Sθ

′

new, Tnew

}
is trained for 3 epochs

under cosine learning rate schedule, where the initial learn-
ing rate is set to 0.01; the batch size is 4; synchronized BN
is adopted.

A.2. Knowledge Distillation

Adaptation function. The adaptation function fadap(·)
is implemented as a 3x3 Conv layer to match the feature di-
mensions of the student-teacher pair. The output dimension
is set to 256 and the stride is set to 1.

Proposal matching. The student and the teacher have
different proposals, leading to unmatched outputs which
cannot be directly distilled. We solve this by sharing stu-
dent’s proposals with the teacher.

A.3. Pruning

The existence of skip connections constrain the blocks in
the same stage to have identical output dimensions. Thus,
the channels can not be arbitrarily pruned. To address this
issue, the BN’s weights in projection mapping (the skip con-
nection of the stage’s first block) are used to prune the out-
put channel of all blocks in the stage. The other channels
inside the block are determined by the weights of the two
BN modules at the middle.

To encourage channel sparsity, we enforce a regulariza-
tion term on the weights of BN. We set the loss weight λ to
be 1× 10−5 in our implementation.

B. Encoding of the Searched Architecture
The student’s backbone architecture is encoded as the

output channels of each convolutional layer in each block at
every stage. Blocks and stages are separated by “-” and “],
[”, respectively. We list out the encodings of students ob-
tained with different base detectors and the corresponding
input resolutions

Figure 1: The H score of sampled student detectors
throughout generation. Joint-DetNAS can consistently opti-
mize the performance-complexity tradeoff for various base
detectors. Weight inheritance strategy consistently improve
the student’s score throughout the search.

R18. Student: [(64, 64)], [(128, 128)-(128, 128)],
[(256, 256)-(256, 256)], [(512, 512)-(512, 512); Input size:
1080× 720.

R50. Student: (58, 59, 205)-(60, 64, 205)-(63, 62,
205)], [(127, 128, 314)-(109, 122, 314)-(127, 123, 314)-
(125, 124, 314)], [(256, 255, 591)-(243, 245, 591)-(237,
247, 591)-(243, 246, 591)-(252, 244, 591)-(252, 254, 591)],
[(509, 507, 1856)-(509, 506, 1856)-(508, 507, 1856)]; In-
put size: 1080× 720.

R101. Student: [(49, 62, 202)-(35, 33, 202)-(56, 62,
202)], [(123, 128, 300)-(57, 90, 300)-(117, 113, 300)-(124,
117, 300)], [(255, 254, 321)-(65, 127, 321)-(32, 47, 321)-
(32, 63, 321)-(120, 161, 321)-(132, 181, 321)-(162, 232,
321)-(175, 241, 321)-(143, 237, 321)-(199, 246, 321)-(210,
238, 321)-(201, 225, 321)-(210, 215, 321)-(211, 222, 321)-
(201, 208, 321)-(198, 206, 321)-(220, 213, 321)-(226, 221,
321)-(234, 221, 321)-(237, 222, 321)], [(249, 229, 321)-
(245, 231, 321)-(511, 478, 2031)-(507, 503, 2031)-(491,
477, 2031)]; Input size: 1080× 720.

X101. Student: [(128, 128, 256)-(112, 112, 256)-(124,
124, 256)], [(256, 256, 512)-(256, 256, 512)-(256, 256,
512)-(256, 256, 512)], [(512, 512, 1024)-(448, 448, 1024)-
(480, 480, 1024)-(496, 496, 1024)-(512, 512, 1024)-(464,
464, 1024)-(416, 416, 1024)-(416, 416, 1024)-(416, 416,
1024)-(416, 416, 1024)-(432, 432, 1024)-(496, 496, 1024)-
(400, 400, 1024)-(400, 400, 1024)-(464, 464, 1024)-(464,
464, 1024)-(432, 432, 1024)-(352, 352, 1024)-(400, 400,
1024)-(384, 384, 1024)-(272, 272, 1024)-(384, 384, 1024)-
(384, 384, 1024)], [(384, 384, 1024)-(352, 352, 1024)-
(1024, 1024, 2048)-(864, 864, 2048)-(384, 384, 2048)]; In-
put size: 1333× 800.

C. Illustration of the search process

In Figure 1, we show the H score (defined in Section
3.1.4 of the paper) of sampled student detectors throughout
generation. The results verify that Joint-DetNAS can con-
sistently optimize the performance-complexity tradeoff for
various base detectors. In addition, weight inheritance strat-
egy enables the student’s score to be consistently improved
throughout the search. We excluded 512 × 512 input res-
olution from the plot since it presents a clear performance

2



Figure 2: The Pareto optimal of various base detectors. As
can be seen, R101 almost dominates both R18 and R50,
indicating that given the same score function, starting with
a larger base detector can often achieve better result.
Base model Group Input size FLOPS (G) FPS AP

R18-FPN
baseline 1333× 800 160.5 28.2 36.0

ours 1080× 720 117.3−27% 33.0+17% 38.5↑39.8

R50-FPN
baseline 1333× 800 215.8 20.5 39.5

ours 1080× 720 145.7−32% 25.4+24% 42.3↑43.2

R101-FPN
baseline 1333× 800 295.7 15.9 41.4

ours 1080× 720 153.9−48% 23.3+47% 43.9↑44.3

X101-FPN
baseline 1333× 800 286.9 13.2 42.9

ours 1333× 800 266.3−7% 14.0+6% 45.7↑46.0

Table 2: The performance of found detector with post-
search fine-tuning for various input base detectors. The
fine-tuning lasts for 16 epochs; cosine learning rate sched-
ule is adopted, with initial learning rate set to 0.01. The
value on the left and right of ↑ are the searched detector’s
performance and its fine-tuned performance, respectively.

gap with other resolutions.
In Figure 2, we show the Pareto optimal of various base

detectors. R101 almost dominates both R18 and R50, which
indicates that given the same score function, starting with a
larger base detector is often the better choice, because base
detector with higher capacity can be adjusted more flexibly,
thus derive a better performance-complexity tradeoff.

D. Post-search Fine-tuning Further Improves
Performance

Although the obtained student detector can achieve com-
petitive performance without additional training, we want to
show that applying post-search fine-tuning to the student-
teacher pair is able to further improve the student’s perfor-
mance. The results are demonstrated in Table 2.

Figure 3: Comparison between iterative training and fully
training. The super-net in the ETP is used as teacher for
both iterative training and fully training. The result shows
that: (1) the convergence speeds are comparable, and (2) the
final performance of iterative training is on par with fully
training.

Search Method FLOPS AP
#Searched Search cost

architectures (GPU days)
NAS-FPN (R50-7@256) [2] 281.3 39.9 10000 >>500

SP-NAS [5] 349.3 41.7 200 200
ours (ETP-R50) 149.1 41.9 200 119

ours (ETP-R101) 180.0 43 200 120
ours (Joint-DetNAS-R50) 145.7 42.3 100 185
ours (Joint-DetNAS-R101) 153.9 43.9 100 200

Table 3: Comparison between ETP search, our Joint-
DetNAS and previous works. The results demostrate that,
both ETP search and Joint-DetNAS outperform previous
works: ETP search is more efficient, while Joint-DetNAS
achieves higher performance.

E. Iterative Training Does Not Hurt Perfor-
mance

In the framework, the student detector is trained itera-
tively in each search iteration during fast evaluation. Each
iterative training process lasts for three epochs with cosine
learning rate schedule. We comparing it with fully training
in this experiment. Specifically, we fix the student detec-
tor and use the super-net in the ETP as teacher. Then we
plot the change of AP with the training time for iterative
training. Iterative training follows the same setting as men-
tioned in A.1.4. Fully training adopts 2x schedule and co-
sine learning rate decay, the initial learning rate is 0.02. The
result in Figure 3 shows that: (1) the convergence speeds are
comparable, and (2) the final performance of iterative train-
ing is on par with fully training.

F. Search with ETP
In fact, ETP can already serve as a search space, from

which detectors can be directly sampled. We compare
the search result of ETP with other NAS methods and
our Joint-DetNAS in Table 3. The comparison shows
that, both ETP search and Joint-DetNAS outperform pre-
vious works: ETP search is more efficient, while Joint-
DetNAS achieves higher performance. Furthermore, the
Joint-DetNAS framework is applicable for different student

3



Figure 4: Analysis of BN’s channel weights in the backbone. R50-FPN is used for analysis. The three graphs demonstrate
the BN’s weights of: Left: normally trained detector; Middle: detector trained with the regularization term, λ = 1 × 10−5;
Right: pruning 10% channels from the backbone. More BN’s channel weights are close to 0 after the regularization is
enforced, which encourages sparsity.

Method AP
Baseline R18 34.0

Whole Feature [1] 35.2+1.2

Anchor Mask (fixed) [7] 35.6+1.6

Gaussian Mask [6] 35.4+1.4

Proposal Feature 36.7+2.7

Table 4: Comparison between different foreground atten-
tion mechanisms. Proposal feature outperforms the other
mask based methods by a large margin. Thus, we adopt this
approach in our framework. The student is trained under 1x
schedule.

Proposal RCNN RCNN bbox
AP

Feature cls original class-aware
- - - - 34.0 (R18)
- - - - 37.4 (R50)
� 36.7+2.7

� 35.8+1.8

� 34.8+0.8

� 35.7+1.7

� � 36.4+2.4

� � � †37.9+3.9

Table 5: Analysis on the effectiveness of each component
in our KD framework. The first two rows are baseline APs
of R18 and R50 FPN detectors; The student is trained un-
der 1x schedule; † at the top left of AP indicates that the
student outperforms the teacher under the same 1x training
schedule.

architecture families without retraining the teacher pool,
thus is more flexible and economical.

G. Ablation Study of Distillation for Object
Detection

Comparison of different ways to distill feature level
information. Most previous detection KD methods [1, 7, 6]
aim to better distill teacher’s feature level information. We

compare the mask based methods with the adopted proposal
feature distillation in Table 4 and found that the latter results
in the most performance gain, while being the simplest to
implement.

Analysis of each component in our KD framework.
The ablation study of each component is shown in Table
5. Our experiments demonstrate that both feature level
and prediction level distillation bring considerable improve-
ment. We can also see that our proposed class-aware local-
ization loss brings noticeable improvement relative to the
original approach which directly distill the localization out-
puts. The student is R18-FPN and trained under 1x sched-
ule, while the teacher is trained under 2x+ms schedule.

H. Ablation Study of Pruning for Object De-
tection

We analyze the effect of the regularization term as well
as the pattern of all BNs’ weights in the detector’s backbone
in Figure 4. As shown in the graph, more BN’s channel
weights are close to 0 after the regularization is enforced.
In addition, BN’s weights in the third projection mapping
are smaller, thus causing the third stage to be pruned the
most. This also indicates that the third stage contains the
most redundancy.

References
[1] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-

mohan Chandraker. Learning efficient object detection models
with knowledge distillation. In Advances in Neural Informa-
tion Processing Systems, pages 742–751, 2017. 4

[2] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Nas-fpn:
Learning scalable feature pyramid architecture for object de-
tection. In CVPR, 2019. 3

[3] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 1

4



[4] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 558–567, 2019. 1

[5] Chenhan Jiang, Hang Xu, Wei Zhang, Xiaodan Liang, and
Zhenguo Li. Sp-nas: Serial-to-parallel backbone search for
object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11863–
11872, 2020. 3

[6] Ruoyu Sun, Fuhui Tang, Xiaopeng Zhang, Hongkai Xiong,
and Qi Tian. Distilling object detectors with task adaptive
regularization, 2020. 4

[7] Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. Dis-
tilling object detectors with fine-grained feature imitation. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4933–4942, 2019. 4

[8] Sergey Zagoruyko and Nikos Komodakis. Diracnets: Training
very deep neural networks without skip-connections. arXiv
preprint arXiv:1706.00388, 2017. 1

5


