
Hierarchical and Partially Observable Goal-driven Policy Learning
with Goals Relational Graph

(Supplementary Material)

Xin Ye and Yezhou Yang
Active Perception Group, School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University, Tempe, USA
{xinye1, yz.yang}@asu.edu

A. Experiments in the Grid-world Domain
A.1. Network Architectures

The detailed network architectures of all the baseline
methods and our method are described in the following.

• DQN. The vanilla DQN implementation that takes the
observation of shape 7 × 7 × 2 as the input in which
the first channel represents the obstacles and the second
channel denotes the designated goal position. The input
is fed into three convolutional layers with 1, 50 and 100
filters of kernel size 1× 1, 3× 3 and 3× 3 respectively
where a 2× 2 max-pooling is attached after the second
and the third layer. It is further followed by two fully-
connected layers with 100 hidden units and 4 outputs
respectively. Each output corresponds to a Q-value
Q(s, g, a) of an action.

Since the goal may not be observable all the time,
i.e. the second channel of the input may not have the
goal information, we also explore the implementation
DQN ONEHOT where we specify the goal with the 16
dimensional one-hot vector and we concatenate it with
the input vector of the first fully-connected layer in
the method DQN, and the implementation DQN FULL
similar to the DQN ONEHOT while we take the full
observation of shape 7× 7× 17 as the input. The first
channel of the input is the obstacle map and each of
the remaining 16 channels denotes corresponding goal
position. We find both DQN ONEHOT and DQN FULL
perform worse than DQN as Table 1 shows. Therefore,
we compare our method with DQN.

• H-DQN. The hierarchical method where the high-level
network takes the full observation of shape 7× 7× 17
as the input and consists of three convolutional layers
(1 filter of kernel size 1× 1, 50 and 100 filters of kernel
size 3× 3 with 2× 2 max-pooling after the second and
the third layers), and two fully-connected layers with

100 hidden units and 17 outputs respectively. The goal
that in the form of the 16 dimensional one-hot vector
is concatenated with the hidden vector before inputting
to the first fully-connected layer, and the 17 outputs
are the Q-values Qe

h(s, g, sg) for all possible sub-goals
including the back-up “random” sub-goal. The low-
level network is exactly same as the method DQN in
which the second channel of the input represents the
position of the proposed sub-goal.

• OURS. The high-level network of our method HRL-
GRG is similar to the method DQN while the sec-
ond channel of the input denotes the position of a can-
didate sub-goal (a goal that is observable) and only
a single output is generated to represent the Q-value
Qe

h(s, g, sg) for the input sub-goal. Our low-level net-
work is exactly same as the method DQN and the low-
level network of H-DQN.

A.2. Training Protocols and Hyperparameters

For all the networks, we adopt the Double DQN [3] tech-
nique and we train all the methods on the 100 training grid-
word maps to achieve the 12 goals (g0, g1, g3, g4, g6, g7,
g8, g9, g11, g12, g14 g15). We first train the method DQN to
achieve the goal from where the goal is observable and we
take the model as the pre-trained model for the DQN and the
low-level networks of both H-DQN and our method. For all
the methods, we adopt the curriculum training paradigm. To
be specific, at episode i < 10000, we start the agent at a po-
sition that is randomly selected from the top (i+10)/100 %
positions closest to the goal position, and when i ≥ 10000,
we start the agent at a random position. All the hyperparame-
ters are summarized in Table 2. We evaluate all the methods
on the 20 testing grid-world maps over 5 different random
seeds, namely 1, 5, 13, 45 and 99.



Table 1: The performance of DQN vs DQN ONEHOT and DQN FULL on the unseen gird-word maps.

Seen Goals Unseen Goals Overall
Method SR↑ AS / MS↓ SPL↑ SR↑ AS / MS↓ SPL↑ SR↑ AS / MS↓ SPL↑
DQN 0.20 20.28 / 5.47 0.13 0.20 11.90 / 4.10 0.15 0.32 16.23 / 5.71 0.23
DQN ONEHOT 0.03 50.85 / 6.47 0.00 0.05 26.86 / 4.10 0.02 0.03 36.66 / 3.13 0.01
DQN FULL 0.01 24.85 / 3.05 0.00 0.05 31.53 / 5.75 0.03 0.05 23.55 / 3.15 0.03

Table 2: Hyperparameters of all the methods for the grid-world domain.

Hyperparameter Description Value
γ Discount factor 0.99
lr Learning rate for all networks (high-level/low-level) 0.0001
main update Interval of updating all the main networks of Double DQN 10
target update Interval of updating all the target networks of Double DQN 10000
batch size Batch size for training all the networks 64
epsilon Initial exploration rate, anneal episodes, final exploration rate 1, 10000, 0.1
max episodes Maximum episodes to train each method 100000
N l

max The maximum steps that low-level network can take if applied 10
Nmax The maximum steps that each method can take 100
optimizer Optimizer for all the networks RMSProp
αij The hyperparameter of our GRG (αij,1, ..., αij,10, αi,j,11) (0, ..., 0, 1)

A.3. Qualitative Results

We show some qualitative results performed by our
method on the unseen grid-world maps to achieve both seen
goals and unseen goals in Figure 1. The results shall be
better viewed in the supplementary videos.

B. Experiments of the Robotic Object Search

B.1. Experiments on AI2-THOR [2]

B.1.1 Network Architecture

We take the first-person view semantic segmentation and
the depth map of window size 30 × 30 as the agent’s pre-
processed observation. We concatenate 4 history observa-
tions to input to our model. Specifically, the high-level
network of our method HRL-GRG takes a sub-goal spec-
ified semantic segmentation of size 4 × 30 × 30 × 1 and
the depth map of the same size as the inputs. The semantic
segmentation and the depth map are first concatenated to
size 4 × 30 × 30 × 2 and then fed into two convolutional
layers with 50 and 100 filters respectively of kernel size 3×3
where a 2× 2 max-pooling is attached after each layer. The
results further pass through two fully-connected layers with
256 hidden units and 1 output respectively. The output is the
predicted Q-value of the input sub-goal.

The low-level network of our method HRL-GRG takes

the same inputs as the high-level network. For each input
stream, our low-level network first flattens it and project it to
a 256 dimensional vector. The two 256 dimensional vectors
are then concatenated and projected to a joint 256 dimen-
sional vector before passing through two branches. Each
branch has two fully-connected layers with 20 hidden units
in the first layer. The first branch outputs a 4 dimensional
vector which is further converted to a probability distribu-
tion over the 4 actions using the softmax function, and the
second branch outputs a single state value. All the hidden
fully-connected layers are activated by the ReLU function.

B.1.2 Training Protocols and Hyperparameters

We follow the same experimental setting in [5] (without
“stop” action). In addition, we adopt the Double DQN [3]
technique for our high-level network and we pre-train our
low-level network to approach a visible object. We train our
method with the curriculum training paradigm we described
in Section A.2. All hyperparameters are summarized in
Table 5 and the detailed results are reported in Table 3.

B.1.3 Qualitative Results

Figure 2 shows some examples of how our method searches
for unseen objects in unseen AI2-THOR [2] scenes. The
results shall be better viewed in the supplementary videos.



(a) (b)

(c) (d)

Figure 1: Trajectories generated by our method on the unseen grid-world maps for both the seen goals (a) (b) and the unseen
goals (c) (d). The different colors represent different sub-goals and the corresponding sub-goal-oriented trajectories where the
red one denotes the designated final goal.

B.2. Experiments on House3D [4]

B.2.1 Data Pre-processing

In House3D simulation, the environments and goals we
adopt for both the single environment setting and the mul-

tiple environments setting are shown in Table 4. For each
environment, we consider discrete actions for the agent to
navigate. Specifically, the agent moves forward / backward
/ left / right 0.2 meters, or rotates 90 degrees at each time
step, which discretizes the environment into a certain num-



Table 3: The performance of SCENE PRIORS [5] (without stop action) and our HRL-GRG in performing robotic object search
task on AI2-THOR [2]. (A: performance improvement; B and C: performance of the method and the RANDOM method.)

+A (B - C) Seen Goals Unseen Goals
SR↑ SPL↑ SR↑ SPL↑

Seen Env. SCENE PRIORS +0.25 (0.62 - 0.37) +0.16 (0.26 - 0.10) +0.08 (0.48 - 0.40) +0.07 (0.18 - 0.11)
HRL-GRG +0.37 (0.74 - 0.37) +0.24 (0.34 - 0.10) +0.33 (0.73 - 0.40) +0.23 (0.34 - 0.11)

Unseen Env. SCENE PRIORS +0.18 (0.56 - 0.38) +0.11 (0.21 - 0.10) +0.12 (0.49 - 0.37) +0.06 (0.16 - 0.10)
HRL-GRG +0.33 (0.71 - 0.38) +0.21 (0.31 - 0.10) +0.38 (0.75 - 0.37) +0.23 (0.33 - 0.10)

ber of reachable locations. We collect the first-person view
RGB images as well as the corresponding the ground-truth
semantic segmentations and depth maps at every locations
of 100 preserved environments (other than those shown in
Table 4) as the training data to train the encoder-decoder
model [1] to predict both the semantic segmentations and
the depth maps from the first-person RGB images. For our
robotic object search task, we resize the both predictions to
the size 10 × 10 and take them as the agent’s observation.
We consider an object that is unique in an environment as a
valid target object for the agent to search, and we define the
goal locations as the 5 locations that yields the observations
with the largest target object area.

B.2.2 Network Architectures

For all the methods, we concatenate 4 history observations
for the agent to make a decision. We describe the architec-
tures of all methods in details as follows.

• DQN. The vanilla DQN implementation that takes the
semantic segmentation of size 4 × 10 × 10 × 78 and
the depth map of size 4 × 10 × 10 × 1 as the inputs.
The segmentation input is first passed through a con-
volutional layer with 1 filter of kernel size 1 × 1 to
reduce its channel size to 1. Then for both the seg-
mentation input and the depth input, we flatten each of
which to a 400 dimensional vector and project it down
to a 256 dimensional vector through a fully-connected
layer respectively. The two 256 dimensional vectors, as
well as the 78 dimensional one-hot vector representing
the target object are further concatenated and fed into
two fully-connected layers with 256 hidden units and 6
outputs as the Q-values of 6 actions. Each hidden fully-
connected layer is activated by the ReLU function.

• A3C. The vanilla A3C implementation takes the target
object specified channel of the semantic segmentation
that has size 4× 10× 10× 1 and the depth map of size
4 × 10 × 10 × 1 as the inputs. For each input stream,
we flatten it and project it to a 256 dimensional vector.
The two 256 dimensional vectors are further concate-
nated and passed through two branches. Each branch

has two fully-connected layers with 20 hidden units in
the first layer. The first branch further projects the 20
dimensional vector to 6 outputs which are converted to
probabilities of 6 actions using the softmax function,
and the second branch outputs a single state value. All
the hidden fully-connected layers are activated by the
ReLU function.

• HRL. The high-level network of HRL is similar to the
method DQN while it outputs 78 values representing
the Q-values of the 78 sub-goals. The low-level network
is exactly same as the method A3C.

• OURS. The high-level network of our method HRL-
GRG is similar to the method A3C while the first
branch is removed and only the second branch is in
place to output a Q-value of the input sub-goal. The
low-level network is exactly same as the method A3C.

B.2.3 Training Protocols and Hyperparameters

Similar to that in the grid-world domain, we also adopt the
Double DQN [3] technique for all the DQN networks. We
pre-train the method A3C to approach an object when the
object is observable and we take it as the pre-trained model
for the low-level networks of both HRL and our method as
well. For all the methods, we adopt the same curriculum
training paradigm as we described in Section A.2 and we
summarize the hyperparameters in Table 5 .

B.2.4 Qualitative Results

Figure 3 shows some qualitative results of our method for
the robotic object search task on House3D [4]. The agent
can only access the first-person view RGB images while the
top-down 2D maps are placed for better visualization. The
results shall be better viewed in the supplementary videos.

References
[1] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In



Table 4: The environments and goals we adopt for the robotic object search task on House3D [4] .

Single
Environment

Seen
Env

5cf0e1e9493994e483e985c436b9d3bc

Seen
Goals

music, television, heater,
stand, dressing table, table

Unseen
Goals

bed, mirror, ottoman,
sofa, desk, picture frame

Multiple
Environments

Seen
Envs

5cf0e1e9493994e483e985c436b9d3bc

Goals
sofa, bed, television,
tv stand, toilet, bathtub

0c9a666391cc08db7d6ca1a926183a76
0c90efff2ab302c6f31add26cd698bea
00d9be7210856e638fa3b1addf2237d6

Unseen
Envs

07d1d46444ca33d50fbcb5dc12d7c103

Goals
sofa, bed, dressing table,
mirror, ottoman, music

026c1bca121239a15581f32eb27f2078
0147a1cce83b6089e395038bb57673e3
0880799c157b4dff08f90db221d7f884

Table 5: Hyperparameters of all the methods for the robotic object search task.

Hyperparameter Description Value
γ Discount factor 0.99
lr Learning rate for all networks (high-level/low-level) 0.0001
main update Interval of updating all the main networks of Double DQN 100
target update Interval of updating all the target networks of Double DQN 100000
A3C update Interval of updating all the A3C networks 10
β The weight of the entropy regularization term in the A3C networks 0.01
batch size Batch size for training DQN networks 64
epsilon Initial exploration rate, anneal episodes, final exploration rate 1, 10000, 0.1
max episodes Maximum episodes to train each method 100000
N l

max The maximum steps that low-level network can take in AI2-THOR / House3D 10 / 50
Nmax The maximum steps that each method can take in AI2-THOR / House3D [5] / 1000
optimizer Optimizer for all the networks RMSProp
αij The hyperparameter of our GRG (αij,1, ..., αij,10, αi,j,11) (0, ..., 0, 1)

Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 4

[2] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d
environment for visual ai. arXiv preprint arXiv:1712.05474,
2017. 2, 4, 7

[3] Hado Van Hasselt, Arthur Guez, and David Silver. Deep rein-
forcement learning with double q-learning. In Thirtieth AAAI
conference on artificial intelligence, 2016. 1, 2, 4

[4] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.
Building generalizable agents with a realistic and rich 3d en-
vironment. arXiv preprint arXiv:1801.02209, 2018. 3, 4, 5,
9

[5] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and
Roozbeh Mottaghi. Visual semantic navigation using scene
priors. arXiv preprint arXiv:1810.06543, 2018. 2, 4, 5



⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

(a) kitchen (toaster) (b) living room (painting)



⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

(c) bedroom (mirror) (d) bathroom (towel)

Figure 2: Trajectories generated by our method for the robotic object search task on AI2-THOR [2].



⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

(a) seen environment seen goal (b) seen environment unseen goal



⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

⇓⇓ ⇓⇓

(c) unseen environment seen goal (d) unseen environment unseen goal

Figure 3: Trajectories generated by our method for the robotic object search task on House3D [4].


