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1. Model Visualization

Our implicit 3D morphable model models the identity,
expression, and hairstyle components of the geometry; as
well as the identity and hairstyle components of the color
of the head with independent parameteric controls. We vi-
sualize these components in Fig. 1. We perform PCA on
the identity geometry and color spaces in order to compute
the principal components. The expression component is vi-
sualized by moving along the directions of the training ex-
pressions, since they are semantically well defined. As we
model hairstyles that include caps, we show the joint space
of geometry and color for hairstyles. Note that the hairstyle
geometry can only take four discrete values – short, long,
cap1, or cap2. Any variation within these categories is
modelled by the identity-geometry component. Similarly,
hairstyle color can only take the values – nocap, cap1, or
cap2. The color of hair without any cap is determined by
the identity-color component.

2. Experiments

Here, we provide more details on the evaluations in the
main paper, and include further evaluations.

2.1. Sampling i3DMM

One of the important features of a 3D Morphable Model
is the ability to randomly sample shapes in the parametric
space. This has been used for generating synthetic data for
training CNNs [1, 5, 6].

We achieve sampling in i3DMM by performing princi-
pal component analysis (PCA) over the training latent codes
for color-identity, geometry-identity, and expressions. We
weigh the singular values using a Gaussian random vari-
able N (0, 0.1) for color-identity, and geometry-identity,
and N (0, 0.25) for expressions. Since the latent codes for
hair shapes and colors can take very limited numbers of val-
ues and are very well defined semantically, we sample these
from their training values. We show several results in the
supplemental video.

As can be seen, our model is biased towards generating
male heads. This is likely due to our gender-biased training
dataset with 46 males and 18 females. While this does not
lead to any clear loss of quality when fitting to female test
scans, see Fig. 6 in the main paper, it might lead to biased
quality of results in other problems, for eg., if random sam-
ples from the model was used for training another network.

3. Comparisons

As mentioned in Sec. 4.4 of the main paper, we com-
pare our model to two existing models, BFM [4] and
FLAME [2]. We show more qualitative model fitting re-
sults in Fig. 7. Next, we provide more details on the fitting
algorithm used.

Fitting: We paint the face region of each model’s tem-
plate mesh to create a mask as shown in Fig. 7. We use
these masked regions of the models for fitting the models
to head scans. To initialize, we mark 8 landmarks (eye cor-
ners, nose, lip corners, and chin) on the template mesh and
rigidly align the template to each ground truth scan using
Procrustes algorithm. We allow for translation, rotation,
and scaling. We use the rigid alignment as initialization and
optimize for the parameters of each model using a mod-
ified iterative closest point (ICP) algorithm which also up-
dates the model parameters. The fitting algorithm maintains
the initial scale and translation but optimizes for rotation.
In each optimization step, we first compute the correspon-
dences as the closest points from the masked region in the
model, shown in Fig. 7, to the scan data. We compute the
loss as shown in Eq. (1) and update the model parameters
along with Euler angles for global rotation. We run the fol-
lowing optimization program up to convergence to fit the
models to our scans:
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Figure 1. Principal components of different spaces i3DMM models. We show color renders at the top, geometry renders in the middle, and
correspondences at the bottom.
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where, xi(✓) 2 R3 is a vertex i in the masked region of
the model (containing N vertices), xi is the point on the
scan data corresponding to xi(✓); R(↵,�, �) 2 R3⇥3 is
the global rotation matrix computed using the Euler angles,
↵,�, and � (2 R); s 2 R, t 2 R3 are the global scale

and translation computed during initialization; ci(✓) 2 R3,
ci 2 R3 are the colors at the vertices xi(✓) and xi respec-
tively; lj 2 R3 and lj(✓) 2 R3 are the L(= 8) ground truth
and model landmarks respectively, as described earlier; and
K 2 R3⇥3 is a diagonal matrix. We set wl = 0.1 during
the fitting process.

Note that the color loss is only enforced for BFM, as
FLAME does not model colors. Further, as the color in-
tensities of BFM and our scans differ, we globally scale
the color values using channel-specific scalars arranged as
a diagonal matrix K which we optimize for along with the
model parameters.

Evaluation details:

We describe the evaluation metrics in Sec. 4.4 of the



GT i3DMM BFM’09 BFM’17 BFM’19 BFM’19 (Full)

Metric i3DMM BFM’09 BFM’17 BFM’19
Chamfer(mm) 1.02 0.96 0.8 0.89
F-Score 99.31 97.66 99.47 98.63
Color 0.07 0.09 0.08 0.09

Figure 2. Comparison of BFM models with i3DMM.

main paper. Here, we present details about the masks used
to evaluate these metrics.

Face region: We manually paint face masks on the
ground truth scans to obtain the ground truth masks. We
exclude the mouth interior of the ground truth scans. We
copy this mask to the i3DMM fits. We do that by annotating
a vertex in i3DMM reconstruction if the nearest point from
that vertex on the ground truth scan is in the masked region.
We show the face masks used to fit BFM and FLAME to
ground truth scans in Fig. 7. We obtain the symmetric met-
rics presented in Table. 1 of the main paper for the face
region in the following way. In one direction, we compute
the errors from masked region of ground truth to the clos-
est points on the (unmasked) models fit to the scan. In the
other direction, we compute the errors from the masked re-
gion of the models to the (unmasked) ground truth scan. We
compute errors between the masked regions of one mesh to
unmasked regions of other mesh to avoid large error metrics
due to annotation mistakes during manual mask painting.

Full Head: We only fit to FLAME full head model as
BFM does not model the entire head. We remove the neck
region from FLAME as shown in Fig. 7 as the ground truth
head scans do not have neck regions. We also remove the
vertices used to close the neck from ground truth as FLAME
has a hole in the mesh at the neck. We compute the metrics
as we do for the face region between these two full head
meshes. We report the full head metrics for our model in
the entire head region, including the closed hole at the neck
mesh.

Comparison Results with BFM’17 and BFM’19.

Towards a comprehensive comparison with state-of-the-art
BFM models, we also show additional comparison results
on BFM’17, and BFM’19 in Fig. 2. The main limitation of
all the BFM models is that they cannot model hair.
It must be noted that we optimized the fitting method in
order to obtain the best quantitative results. Many fitting
approaches use a statistical regularizer, which encourages
the reconstructions to be closer to the mean shape. This
would lead to smoother and more realistic results (see
Fig. 3), but with slightly larger quantitative errors (color
error: 0.1 with reg., 0.09 w/o; identical geometry errors).

Without Regularizer With Regularizer

G
T

BF
M

’0
9

Figure 3. Comparison of BFM’09 with and without regularizer.

3.1. Ablative Analysis

In Fig. 8, we show additional qualitative results for the
ablative analysis. We also show the quantitative results for
full head i3DMM fit in comparison to i3DMM variants. We
compare the four models that evaluate our design choices
in Table 1. The error metrics are computed for the face re-
gion using manually annotated face masks as described in
Sec. 3. We only evaluate the face region, as the ground truth
for hair is noisy, and small quantitative differences are not
very indicative of degradation in quality. Although the geo-
metric reconstruction accuracy is marginally better without
the landmark supervision loss, as compared to i3DMM, the
color reconstruction accuracy of i3DMM is higher. Also, as
mentioned in the main paper, Sec. 4.3, texture transfer re-
sults around the ear regions with landmark supervision loss
are worse compared to i3DMM.

3.2. Correspondence Evaluation

We quantitatively evaluate the correspondences pre-
dicted by i3DMM by using the FLAME and BFM fits as
ground truth correspondences. To this end, we first find the
closest points from the vertices of the (masked) model fits to
the i3DMM reconstructions for different scans. We will call
these correspondences ground truth annotations here. We
use a KD tree algorithm for efficiency. The masked face re-
gion contains 26370 vertices for BFM, and 1873 vertices for
FLAME. We also transfer the annotations for one i3DMM
reconstruction, to all the other reconstructions. This process
is same as that described in annotation transfer application
(see Sec. 4.5 of main paper). We compute the correspon-
dence error as the average of error between the transferred
and the ground truth annotations. Note that we transfer an-
notations from one i3DMM fit to every other i3DMM fit.
Therefore, we compute a symmetric error metric.

The resulting distribution of error is shown in Fig. 4
(evaluating with BFM as ground truth is plotted in red,
while FLAME is plotted in blue). The mean and median
of errors for BFM is 5.08mm and 3.02mm respectively.
The mean and median of errors for FLAME is 2.36mm and
1.83mm respectively. Note that, this error does not only
capture the error in i3DMM’s correspondence predictions
but also the error in registrations of FLAME and BFM fits,
see Table. 1 in the main paper.



Uniform No landmark Independently trained i3DMM
sampling supervision color and geometry

Chamfer (mm) # 1.1065 0.9775 1.0319 1.0143
F-score " 98.5031 99.5339 99.1276 99.3101
Color # 0.0734 0.0681 0.0796 0.0655

Table 1. Quantitative results for ablation study. The columns, from left to right, show results obtained with uniform sampling for SDF
instead of landmark-based sampling, without sparse pairwise landmark supervision loss, independently training for representing geometry
and color, final model (i3DMM), and ground truth.

Figure 4. Distribution of errors in correspondences predicted by
i3DMM computed using FLAME fits (face) as ground truth (blue),
and using BFM fits (face) as ground truth (red).

Face scan Short hairstyle Long hairstyle Cap

S
u

b
je

ct
 1

S
u
b

je
ct

 2
S

u
b
je

ct
 3

Figure 5. Completing face scans (left) with different hair styles
(short hairstyle (middle-left), long hairstyle (middle-right), and
cap (right)) using i3DMM as prior.

4. Applications

4.1. Full Head Completion

We use the i3DMM prior to complete face scans with
different hairstyles as shown in Fig. 5. To obtain the face
meshes from our head meshes, we delete all the vertices
that are outside a sphere around the the tip of the nose. We
learn the latent vector for the given test scan using the SDF
samples of the face mesh, as described in Sec. 4.1 of the
main paper. Additionally, we semantically control the hair
style of the completed scan by adding a regularizer that en-
forces the learned zgeoH and zcolH to be close to the hairstyle
latent vectors learned during training.

It can be inferred from the results in Fig. 5 that our model
learns a good prior distribution, generating plausible heads
for the given faces. i3DMM offers user-guided control for
head completion and can be used to turn existing face-only
3DMMs into full head 3DMMs. Further, our method can
also be used as a prior distribution for applications such as
monocular 3D reconstruction [7].

4.2. Annotation Transfer

We show more results for annotation transfer described
in Sec. 4.5 of the main paper, in Fig. 6.

4.3. Visualization Details

The output of the i3DMM is a signed distance field. Gen-
erally, marching cubes algorithm is used to reconstruct the
surface from a SDF. However, based on the resolution used,
marching cubes algorithm introduces unpleasant surface ar-
tifacts. To avoid these artifacts, we used a sphere tracer
to render our results. We used the Blinn-Phong reflection
model to shade our geometry results. We apply a gamma
correction with � = 0.65 for the color renders. Optimizing
for the latent code of i3DMM given a test mesh takes about
60s on RTX8000. Our implementation of sphere tracer
takes about 40s on a RTX8000 GPU to render a 256x256
image (including network evaluations and shading) with
our (unoptimized) code. We use Redner [3] for rendering
meshes.
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Figure 6. Additional annotation transfer results. Top: segmentation transfer front view. Middle: segmentation transfer side view. Bottom:
landmark transfer. Left column shows i3DMM reconstructions with manual annotations. Right part shows annotations transferred to head
scans using i3DMM.
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Ground truth i3DMM BFM FLAME (face) FLAME (full head)

Figure 7. Additional comparison results between i3DMM (full head) fits, BFM (face) fit, and FLAME (full head and face) fits.
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Figure 8. Additional ablation results. From left to right, i3DMM without landmark-based sampling, i3DMM without landmark supervision,
i3DMM with independent color and geometry training, i3DMM, and ground truth results are shown.


