Complete & Label: A Domain Adaptation Approach to Semantic Segmentation
of LiDAR Point Clouds — Supplementary Material

Li Yi Boqing Gong Thomas Funkhouser
Google Research
{ericyi, bgong, tfunkhouser}@google.com

This document provides a list of supplemental materials
to support the main paper.

o Additional Ablation Studies - We provide additional
ablation studies in a more diverse set of domain adap-
tation directions in Section A. Specifically, we exam-
ine the correlation between scene completion and do-
main adaptation performance, and we also compare our
method with handcrafted sampling aligning baselines.

e Loss Function for Training SVCN - We describe the
loss function for training the sparse voxel completion
network (SVCN) in detail in Section B.

e Label Transfer to and from the Canonical Domain -
We explain how to propagate the source-domain labels
to the dense, complete point clouds in the canonical
domain and how to project segmentation results from
the canonical domain to the target domain in Section C.

e Implementation Details - We provide additional im-
plementation details of our whole pipeline in Section D.

A. Additional Ablation Studies

To evaluate the correlation between the quality of scene
completion and the performance of domain adaptation, we
provided ablation studies using different variants of our
method between Waymo and nuScenes-lidarseg in the main
submission. Here we provide additional domain adaptation
directions including cases between nuScenes-lidarseg and
SemanticKitti and between Waymo and SemanticKitti. The
settings are exactly the same as Table 3 in the main submis-
sion where we replace SVCN in our method with its variants
and report the resulting segmentation results in Table 1. It
again shows that better scene completion qualities lead to bet-
ter domain transfer performances, indicating the importance
of high-quality surface completion in our method.

In addition, we also provide comparisons with hand-
crafted sampling aligning baselines regarding more domain
adaptation directions in Table 2 to complement Table 4 in
the main submission. The setting is the same as Table 4

Table 1. The segmentation mloU of our approach when using dif-
ferent scene completion methods. N denotes nuScenes-lidarseg
dataset, W denotes Waymo dataset and K denotes SemanticKITTI
dataset.

Source— Ours w/o Ours w/o adv. Ours-full
Target refinement
N—K 30.1 324 33.7
K—N 29.6 30.7 31.6
W—K 58.8 59.5 60.4
K—W 50.3 51.2 52.0

in the main submission but we also include domain adapta-
tion results between nuScenes-lidarseg and SemanticKitti
as well as those between Waymo and SemanticKitti. Notice
the adaptation between nuScenes-lidarseg and SemanticKitti
includes 10 categories. Our method outperforms both B1
and B2 as well as the no adaptation baseline by large mar-
gins, demonstrating the importance of our learning based
approach and the SVCN network.

Table 2. Comparison with handcrafted sampling aligning baselines.
N denotes nuScenes-lidarseg dataset, W denotes Waymo dataset
and K denotes SemanticKITTI dataset. No DA denotes no adap-
tation, B1 analytically downsamples or upsamples LiDAR beams,
and B2 linearly interpolates LiDAR points to densify the point
cloud.

Src—Tgt No DA Bl B2 Ours
N—K 235 28.1 26.8 33.7
K—N 27.9 30.3 29.7 31.6
W—K 55.0 - 56.6 60.4
K—>W 46.3 - 49.5 52.0

B. Loss Function for Training SVCN

Figure 3 in the main text shows the architectures of the
structure generation network and the structure refinement
network, respectively. Both networks contain 7 resolution
levels. For any input-output point clouds pairs, we have
the ground truth voxel existence probability (0 or 1) at each
of the 7 levels. In particular, we set the groud truth voxel
existence probability for a voxel to be 1 if the voxel contains
one or more 3D points of the output point cloud.

To train the structure generation network, we use a bi-
nary cross entropy 10ss Lyce(Chen, Chen) between the ground
truth voxel existence probability clgen
voxel existence probability élgen, leading to a loss function

Lgen = Y- Loce(Chen» Chen)» where [indexes the I-th level of
]

and the predicted

the decoder.

To train the structure refinement network, we first pre-
train the structure generation network and then fix it but
switch to the inference mode where we use the predicted
voxel existence probability to prune voxels. A binary cross
entropy 108s Lrefine = Loce (Cohpine Congine) at level 0 between

the ground truth voxel existence probability V.. . and the
predicted voxel existence probability 2 . is used to super-

refine
vise the network.

Local adversarial loss to model the prior over sur-
faces. We have a strong prior on the completed scene,
namely the recovered voxels should lie on 3D surfaces. Previ-
ously, researchers have investigated a lot about how to inject
high level prior knowledge to get a better loss landscape
and a higher model performance. Among them adversarial
learning is a successful attempt [3, 5, 4]. Inspired by this, we
introduce local adversarial learning to further inject the 3D
surface prior to our SVCN. In addition to the binary cross
entropy loss we mentioned before, we add adversarial losses
into Lgen and Liefine, which we will detail below.

We treat SVCN as a generator which could estimate for
a given incomplete LiDAR point cloud its corresponding
complete counterpart and output a set of voxel existence
predictions élgen and ¢2 . on different resolution levels. We
use g' to represent a set of voxels on resolution level [from
a real complete scene where each voxel is associated with
an existence probability 1. Following [!], we introduce

discriminator networks DL, and D% . to differentiate ¢!

and g', and optimize SVCN together with the discriminators
in an adversarial manner.

Instead of using a global discriminator encoding the
whole scene which usually contains too much information
besides the surface prior and could easily introduce com-
plex noise for learning, we use local discriminators whose
receptive field is restricted. This is achieved by using fully-
convolutional architectures to retain the spatial information
in the discriminator. We use the same fully-convolutional ar-
chitecture for discriminators on all resolution levels. Specifi-
cally, we adopt 4 convolution layers with kernel size 3 and
stride 2 followed by a linear layer in the end, where the out-
put channel numbers are {32, 64, 64, 128, 1}. We do not use
batch normalization for the discriminators. We use D(é&!);
to represent the confidence value predicted by D for the
generator output ¢ on each output voxel i. Similarly we
use D(g') ;j to represent the confidence value predicted by
D for the real samples g’ on each output voxel j. To train
a discriminator on resolution level [, we use binary cross

entropy to classify each output voxel into either real or fake
and the loss can be written as:

£l ==Y log(1 - D(E);) - Y logD(g"); (1)

The adversarial loss for SVCN encourages the generator
to generate voxel existence predictions fooling the discrim-
inator and can be written as L,q,(¢') = —>"logD(é"); on

resolution level [. After adding the adversarial loss into L,
and L efine, our final loss functional for SVCN is:

Egen = Z[’bce(céem é,f;en) + AlLagy (ééen))
l

Liefine = Lhce (C?eﬁnev é?eﬁne) + ALady (61(')eﬁne) 3)

Confidence-aware convolution in the discriminators.
It is worth noticing that ¢ contains continuous probability
values lying on densely upsampled voxels. On the other
hand, ¢’ lies on voxels from real complete scenes where
each voxel is associated with an existence probability 1.
Even if SVCN predicts perfect existence scores, it is still
very easy for a discriminator to tell its difference from re-
alistic scenes using sparse convolution operations. This is
to say, the gradients from discriminator will not necessar-
ily push SVCN toward better predictions, which is against
our hope. To cope with this issue, we introduce confidence-
aware sparse convolution operation to replace the normal
sparse convolution in all the discriminators. Recall that the
sparse convolution operation proposed in [2] resembles nor-
mal convolution operation but restricts the computation to
only active sites. To be specific, assuming a represents an ac-
tive voxel site, NV '(a) represents its neighboring active sites.
For each b € N (a), f, represents the corresponding input
voxel features, and W, represents the corresponding convo-
lution kernel matrix. The output feature £/ on site a after
sparse convolution is f5 = >, \r(o) Wofe. In confidence-
aware sparse convolution, we have an additional confidence
value ¢, associated with each voxel b ranging from O to 1 and
the output feature after each convolution operation becomes
fo = 2ven(a) @Wofs. When applying such confidence-
aware sparse convolution to ¢ and ¢!, & and ¢! will act as
both input features and confidence values. It can be seen that
when SVCN generates perfect voxel existence probability
in either O or 1, the discriminator using confidence-aware
sparse convolution will not be able to differentiate it from
realistic scenes. Therefore confidence-aware sparse convolu-
tion is more suitable for our discriminators. To further reduce
the difference between ¢! and ¢ so that trivial solutions can
be avoided and learning could start smoothly, we sharpen the
predicted existence probability ¢ from SVCN by replacing
the sigmoid activation with a sharpened sigmoid activation
s(z) = 1%%’“ where k > 1 is a sharpening factor.

C. Label Transfer to and from the Canonical
Domain

In order to learn a segmentation network in the canon-
ical domain using source domain labels while being able
to infer the target domain point labels, we need two op-
erations Prop(-) and Proj(-). Prop(-) propagates labels y?
in the source domain to the canonical domain and Proj(-)
projects predicted labels in the canonical domain back to
the target domain, resulting in predicted labels y; In this
work, we simply adopt nearest neighbor based Prop(-) and
Proj(-) operations. To be specific, we first voxelize input
source domain point clouds x; and conduct majority-voting
within each voxel to determine the voxel labels, and then
for each voxel we propagate its label to its nearest neighbor
voxel in the SVCN output ¢° (x{). In the loss function, we
mask out voxels without any propagated labels in)°(x7)
during training. At inference time, we voxelize input target
domain point clouds x¢, fetch the voxel labels from the seg-
mentation network predictions ¢(¢*(x’)) through nearest
neighbor search, and assign the fetched label to all the points
from x§ within each voxel.

D. Implementation Details

The structure generation network, structure refinement
network and the semantic segmentation network all contain
7 levels in their encoder-decoder architecture and adopt the
same number of convolution filters on different levels. The
numbers of filters from level O to level 6 of the encoder are

(24, 24), (24, 32), (32, 48), (48, 64), (64, 80), (80, 96), (96, 112)

where each (-) corresponds to one level. The numbers
of filters from level 5 to level 0 of the decoder are
(112,96), (80, 80), (64, 64), (48, 48), (32, 32), (16,16). In
all our experiments, we use a voxel size of d = 20cm. To

obtain the ground truth voxel existence probability c.. on

en

level [for structure generation network training, we voielize
the ground truth complete point cloud with a voxel size of
2!d and the voxel existence probability is set to be 1 for
a voxel as long as there is one point falls into it. We use
only LiDAR point positions as inputs without considering
the color or intensity information. While training the
segmentation network, we augment the input point clouds
through randomly rotating them around z-axis and randomly
flipping them with respect to the x-axis and y-axis. For both
SVCN and semantic segmentation network training, we
use a batch size of 2. We use Adam optimizer where the
momentum is set as 0.9 and 0.99. And we use an initial
learning rate of 103, which is decayed with a factor of
0.7 after every 200k training steps. The learning rate of
the discriminator for adversarial learning is set to be 1074
initially and also decays with a factor of 0.7 after every 200k
training steps.

References

[1] Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances
in neural information processing systems, pages 26722680,
2014.

[2] Benjamin Graham and Laurens van der Maaten. Sub-
manifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017.

[3] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681-4690,
2017.

[4] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-gan: a point cloud upsampling adversar-
ial network. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 7203-7212, 2019.

[5] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao
Dong, Yu Qiao, and Chen Change Loy. Esrgan: Enhanced
super-resolution generative adversarial networks. In Proceed-
ings of the European Conference on Computer Vision (ECCV),
pages 0-0, 2018.

