Supplementary Material for Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

Zhaoyuan Yin1, Jia Zheng2, Weixin Luo3, Shenhan Qian4, Hanling Zhang5,*, Shenghua Gao4,6

1College of Computer Science and Electronic Engineering, Hunan University2KooLab, Manycore 3Meituan Group4ShanghaiTech University 5School of Design, Hunan University6Shanghai Engineering Research Center of Intelligent Vision and Imaging

\{zyyin, jh_hlzhang\}@hnu.edu.cn jiajia@qunhemail.com luoweixin@meituan.com
\{qianshh, gaoshh\}@shanghaitech.edu.cn

In this supplementary material, we first present the details of the network architecture. Then, we show the quantitative results on YouTube-VOS dataset. Finally, we provide more qualitative results of IPN [3] and MANet [2] on DAVIS dataset [4] and YouTube-VOS dataset [5].

Network architecture. We divide state s_t into a sequence of N pairs of segmentation quality q_t and recommendation history h_t, and process it frame by frame. The state s_t is firstly fed into two fully connected layers with both 128 feature dimensions to obtain feature sequence. Then, we use a Bi-Directional LSTM unit with 128 hidden size to capture the temporal information of the feature sequence. Finally, Q value of each frame is obtained via two fully connected layers with 128 and 1 feature dimensions. The detail of the network architecture is shown in Figure 1.

![Network Architecture](image)

Figure 1. Network architecture. QAM denotes the segmentation quality assessment module.

Quantitative results. Figure 2 shows the curves of the J&F versus the number of rounds on YouTube-VOS dataset.

Qualitative results. We show more qualitative results for the IPN [3] and MANet [2] in Figure 3a and 3b. Similar to the case of ATNet [1], the interactive video object segmentation algorithms combined with our agent can produce more accurate segmentation masks.

References

*Corresponding author.
Figure 2. The curve of $J\&F$ versus the number of rounds on YouTube-VOS dataset.

Figure 3. Qualitative comparison on DAVIS (first two rows) and YouTube-VOS dataset (the last two rows). All result masks are sampled after 8 rounds. The ground truth is available (“Oracle”) in the second and third columns, while the ground truth is unknown (“Wild”) in the last four columns. We show the segmentation quality $J\&F$ on each frame.