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In this supplementary material, we first present the de-
tails of the network architecture. Then, we show the quan-
titative results on YouTube-VOS dataset. Finally, we pro-
vide more qualitative results of IPN [3] and MANet [2] on
DAVIS dataset [4] and YouTube-VOS dataset [5].

Network architecture. We divide state st into a sequence
of N pairs of segmentation quality qt and recommendation
history ht, and process it frame by frame. The state st is
firstly fed into two fully connected layers with both 128 fea-
ture dimensions to obtain feature sequence. Then, we use a
Bi-Directional LSTM unit with 128 hidden size to capture
the temporal information of the feature sequence. Finally,
Q value of each frame is obtained via two fully connected
layers with 128 and 1 feature dimensions. The detail of the
network architecture is shown in Figure 1.

Figure 1. Network architecture. QAM denotes the segmentation
quality assessment module.

Quantitative results. Figure 2 shows the curves of the
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J&F versus the number of rounds on YouTube-VOS
dataset.
Qualitative results. We show more qualitative results for
the IPN [3] and MANet [2] in Figure 3a and 3b. Similar
to the case of ATNet [1], the interactive video object seg-
mentation algorithms combined with our agent can produce
more accurate segmentation masks.
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(a) IPN [3]
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(b) MANet [2]
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(c) ATNet [1]
Figure 2. The curve of J&F versus the number of rounds on YouTube-VOS dataset.
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(a) IPN [3].
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(b) MANet [2].
Figure 3. Qualitative comparison on DAVIS (first two rows) and YouTube-VOS dataset (the last two rows). All result masks are sampled
after 8 rounds. The ground truth is available (“Oracle”) in the second and third columns, while the ground truth is unknown (“Wild”) in
the last four columns. We show the segmentation quality J&F on each frame.
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