
Supplementary Materials: Learning to Recover 3D Scene Shape from a Single

Image

1. Datasets

1.1. Datasets for Training

To train a robust model, we use a variety of data sources,

each with its own unique properties:

• Taskonomy [21] contains high-quality RGBD data

captured by a LiDAR scanner. We sampled around

114K RGBD pairs for training.

• DIML [10] contains calibrated stereo images. We use

the GA-Net [22] method to compute the disparity for

supervision. We sampled around 121K RGBD pairs

for training.

• 3D Ken Burns [13] contains synthetic data with ground

truth depth. We sampled around 51K RGBD pairs for

training.

• Holopix50K [8] contains diverse uncalibrated web

stereo images. Following [17], we use FlowNet [9]

to compute the relative depth (inverse depth) data for

training.

• HRWSI [18] contains diverse uncalibrated web stereo

images. We use the entire dataset, consisting of 20K

RGBD images.

1.2. Datasets Used in Testing

To evaluate the generalizability of our method, we test

our depth model on a range of datasets:

• NYU [15] consists of mostly indoor RGBD images

where the depth is captured by a Kinect sensor. We

test our method on the official test set, which contains

654 images.

• KITTI [7] consists of street scenes, with sparse metric

depth captured by a LiDAR sensor. We use the stan-

dard test set (652 images) of the Eigen split.

• ScanNet [6] contains similar data to NYU, indoor

scenes captured by a Kinect. We randomly sampled

700 images from the official validation set for testing.

• DIODE [16] contains high-quality LiDAR-generated

depth maps of both indoor and outdoor scenes. We use

the whole validation set (771 images) for testing.

• ETH3D [14] consists of outdoor scenes whose depth is

captured by a LiDAR sensor. We sampled 431 images

from it for testing.

• Sintel [1] is a synthetic dataset, mostly with outdoor

scenes. We collected 641 images from it for testing.

• OASIS [5] is a diverse dataset consisting of images

in the wild, with ground truth depth annotations by

humans. It contains both sparse relative depth labels

(similar to DIW [3]), and some planar regions. We test

on the entire validation set, containing 10K images.

• YouTube3D [4] consists of in-the-wild videos that are

reconstructed using structure from motion, with the

sparse reconstructed points as supervision. We ran-

domly sampled 58K images from the whole dataset for

testing.

• RedWeb [17] consists of in-the-wild stereo images,

with disparity labels derived from an optical flow

matching algorithm. We use 3.6K images to evaluate

the WHDR error, and we randomly sampled 5K points

pairs on each image.

• iBims-1 [11] is an indoor-scene dataset, which consists

of 100 high-quality images captured by a LiDAR sen-

sor. We use the whole dataset for evaluating edge and

plane quality.

We will release a list of all images used for testing to facili-

tate reproducibility.

2. Details for Depth Prediction Model and

Training.

We use the depth prediction model proposed by Xian et

al. [18]. We follow [20] and combine the multi-source train-

ing data by evenly sampling from all sources per batch.

As HRWSI and Holopix50K are both web stereo data,
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Figure 1: The network architecture for the DPM. The network has

two output branches. The decoder outputs the depth map, while

the auxiliary path outputs the inverse depth. Different losses are

enforced on these two branches.

we merge them together. Therefore, there are four dif-

ferent data sources, i.e. high-quality Taskonomy, syn-

thetic 3D Ken Burn, middle-quality DIML, and low-quality

Holopix50K and HRWSI. For example, if the batch size is

8, we sample 2 images from each of the four sources. Fur-

thermore, as the ground truth depth quality varies between

data sources, we enforce different losses for them.

For the web-stereo data, such as Holopix50K [8] and

HRWSI [18], as their inverse depths have unknown scale

and shift, these inverse depths cannot be used to compute

the affine-invariant depth (up to an unknown scale and shift

to the metric depth). The pixel-wise regression loss and

geometry loss cannot be applied for such data. Therefore,

during training, we only enforce the ranking loss [17] on

them.

For the middle-quality calibrated stereo data, such as

DIML [10], we enforce the proposed image-level normal-

ized regression loss, multi-scale gradient loss and ranking

loss. As the recovered disparities contain much noise in lo-

cal regions, enforcing the pair-wise normal regression loss

on noisy edges will cause many artifacts. Therefore, we en-

force the pair-wise normal regression loss only on planar

regions for this data.

For the high-quality data, such as Taskonomy [21] and

synthetic 3D Ken Burns [13], accurate edges and planes

can be located. Therefore, we apply the pair-wise normal

regression loss, ranking loss, and multi-scale gradient loss

for this data.

Furthermore, we follow [12] and add a light-weight aux-

iliary path on the decoder. The auxiliary outputs the inverse

depth and the main branch (decoder) outputs the depth. For

the auxiliary path, we enforce the ranking loss, image-level

normalized regression loss in the inverse depth space on all

data. The network is illustrated in Fig. 1.

3. Sampling Strategy for Pairwise Normal Loss

We enforce the pairwise normal regression loss on

Taskonomy and DIML data. As DIML is more noisy than

Taskonomy, we only enforce the normal regression loss on

the planar regions, such as pavements and roads, whereas

for Taskonomy, we sample points on edges and on planar

regions. We use the local least squares fitting method [19]

to compute the surface normal from the depth map.

For edges, we follow the method of Xian et al. [18],

which we describe here. The first step is to locate im-

age edges. At each edge point, we then sample pairs of

points on both sides of the edge, i.e. P = {(PA, PB)i|i =
0, ..., n}. The ground truth normals for these points are

N ∗ = {(n∗

A
,n∗

B
)i|i = 0, ..., n}, while the predicted nor-

mals are N = {(nA,nB)i|i = 0, ..., n}. To locate the

object boundaries and planes folders, where the normals

changes significantly, we set the angle difference of two

normals greater than arccos(0.3). To balance the samples,

we also get some negative samples, where the angle differ-

ence is smaller than arccos(0.95) and they are also detected

as edges. The sampling method is illustrated as follow.

S1 = {n∗

A ·n∗

B > 0.95,n∗

A ·n∗

B < 0.3|(n∗

A,n
∗

B)i ∈ N
∗}
(1)

For planes, on DIML, we use [2] to segment the roads,

which we assume to be planar regions. On Taskonmy, we

locate planes by finding regions with the same normal. On

each detected plane, we sample 5000 paired points on av-

erage. Finally, we combine both sets of paired points and

enforce the normal regression loss on them, see E.q. 4 in

our main paper.

4. Illustration of the Reconstructed Point

Cloud

We illustrate some examples of the reconstructed 3D

point cloud from our proposed approach in Fig. 2. All

these data are unseen during training. This shows that our

method demonstrates good generalizability on in-the-wild

scenes and can recover realistic shape of a wide range of

scenes.

5. Illustration of Depth Prediction In the Wild

We illustrate examples of our single image depth predic-

tion results in Fig. 3. The images are randomly sampled

from DIW and OASIS, which are unseen during training.

On these diverse scenes, our method predicts reasonably

accurate depth maps, in terms of global structure and local

details.
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Figure 2: Point Cloud Illustration. The first column shows the input images. The remaining columns show the point cloud recovered

from our proposed approach from the left, right, and top respectively.
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Figure 3: Examples of depths on in-the-wild scenes. Purple indicates closer regions whereas red indicates farther regions.
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